
Artificial Intelligence 22AI305

1 Dept. of CSE (AIML), MCE, Hassan

MODULE 1

1. Introduction

 What is AI?

2. Intelligent Agents

 Agents and environment

 Good behavior-The concept of Rationality

 The nature of environment

 The structure of agents

3. Solving Problems by Searching

 Problem-solving agents

 Example problems

 Searching for solution

 Uninformed search strategies:

 Breadth-first search

 Uniform-cost search

 Depth-first search

 Depth-limited search

 Iterative deepening depth-first search

 Bidirectional search

Artificial Intelligence 22AI305

2 Dept. of CSE (AIML), MCE, Hassan

INTRODUCTION

WhatisAI?

The definitions of AI:

Figure 1: Some definitions of artificial intelligence, organized into four categories.

The definitions on the top, (a) and (b) are concerned with thought processes and reasoning,

whereas those on the bottom, (c) and (d) address behavior. The definitions on the left, (a) and(c)

measure success in terms of human performance, and those on the right, (b) and(d) measure

the ideal concept of intelligence called rationality.

1)Acting humanly: The Turing Test approach

 The Turing Test, proposed by Alan Turing (1950), was designed to provide a

satisfactory operational definition of intelligence.

A computer passes the test if a human interrogator, after posing some written questions, cannot

Artificial Intelligence 22AI305

3 Dept. of CSE (AIML), MCE, Hassan

tell whether the written responses come from a person or from a computer.

The computer would need to possess the following capabilities:

 natural language processing to enable it to communicate successfully in English

 knowledge representation to store what it knows or hears

 automated reasoning to use the stored information to answer questions and to draw new

conclusions

 machine learning to adapt to new circumstances and to detect and extrapolate patterns.

To pass the total Turing Test, the computer will need

 computer vision to perceive objects, and

 robotics to manipulate objects and move about.

2) Thinking humanly: The cognitive modeling approach

If we are going to say that a given program thinks like a human, we must have some way of

determining how humans think.

There are three ways to do this:

 introspection - trying to catch our own thoughts as they go by;

 psychological experiments - observing a person in action;

 brain imaging - observing the brain in action.

Once we have a sufficiently precise theory of the mind, it becomes possible to express the theory

as a computer program.

This can be achieved through cognitive science

Cognitive AI discuss the theories about how human mind works– for example, theories about

how we recognize faces and other objects, or about how we solve abstract problem.

3) Thinking Rationally: The “Laws of thought” approach

 The Greek philosopher Aristotle was one of the first to attempt to codify “right thinking,”

that is, irrefutable reasoning processes.

 His syllogisms provided patterns for argument structures that always yielded correct

Artificial Intelligence 22AI305

4 Dept. of CSE (AIML), MCE, Hassan

conclusions when given correct premises.

 example, “Socrates is a man; all men are mortal; therefore, Socrates is mortal.”

 These laws of thought were supposed to govern the operation of the mind; their study

initiated the field called logic.

4)Acting Rationally: The Rational Agent approach

 An agent is just something that acts: operate autonomously, perceive their environment,

persist over a prolonged time period, adapt to change, and create and pursue goals.

 A rational agent is one that acts so as to achieve the best outcome or, when there is

uncertainty, the best expected outcome.

Artificial Intelligence 22AI305

5 Dept. of CSE (AIML), MCE, Hassan

INTELLIGENT AGENTS

Agents and Environments

Figure 1.1: Agents interact with environments through sensors and actuators.

Agent:

An Agent is anything that can be viewed as perceiving its environment through sensors and

acting upon that environment through actuators.

An agent can be:

 A human agent has eyes, ears, and other organs for sensors and hands, legs, mouth, and

other body parts for actuators.

 A robotic agent might have cameras and infrared range finders for sensors and various

motors for actuators.

 A software agent receives keystrokes, file contents, and network packets as sensory

inputs and acts on the environment by displaying on the screen, writing files, and sending

network packets.

Artificial Intelligence 22AI305

6 Dept. of CSE (AIML), MCE, Hassan

Percept:

We use the term percept to refer to the agent's perceptual inputs at any given instant.

Percept Sequence:

An agent's percept sequence is the complete history of everything the agent has ever perceived.

Agent function:

Mathematically speaking, we say that an agent's behavior is described by the agent function that

maps any given percept sequence to an action.

Agent program

Internally, the agent function for an artificial agent will be implemented by an agent program. It

is important to keep these two ideas distinct. The agent function is an abstract mathematical

description; the agent program is a concrete implementation, running on the agent architecture.

To illustrate these ideas, we will use a very simple example-the vacuum-cleaner world

This particular world has just two locations: squares A and B. The vacuum agent perceives

which square it is in and whether there is dirt in the square. It can choose to move left, move

right, suck up the dirt, or do nothing. One very simple agent function is the following: if the

current square is dirty, then suck, otherwise move to the other square. A partial tabulation of this

agent function is shown in Figure 1.2

A vacuum-cleaner world with just two locations.

Agent function

Artificial Intelligence 22AI305

7 Dept. of CSE (AIML), MCE, Hassan

Figure 1.2: Partial tabulation of a simple agent function for the vacuum-cleaner world

Good Behavior: The Concept of Rationality

A rational agent is one that does the right thing every entry in the table for the agent function is

filled out correctly.

 When an agent is plunked down in an environment, it generates a sequence of actions

according to the percepts it receives.

 This sequence of actions causes the environment to go through a sequence of states. If the

sequence is desirable, then the agent has performed well.

 This notion of desirability is captured by a performance measure that evaluates any

given sequence of environment states.

1) Rationality

The rationality of an agent is measured by its performance measure:-

 The performance measure that defines the criterion of success.

 The agent’s prior knowledge of the environment.

 The actions that the agent can perform.

 The agent’s percept sequence to date.

This leads to a definition of a rational agent:-

Artificial Intelligence 22AI305

8 Dept. of CSE (AIML), MCE, Hassan

“For each possible percept sequence, a rational agent should select an action that is

expected to maximize its performance measure, given the evidence provided by the percept

sequence and whatever built-in knowledge the agent has”.

2) Omniscience, learning, and autonomy

 We need to be careful to distinguish between rationality and omniscience.

 An omniscient agent knows the actual outcome of its actions and can act accordingly;

but omniscience is impossible in reality.

The Nature of Environment

1) Specifying the Task Environment

 The environment is the Task Environment (problem) for which the Rational Agent is the

solution. Any task environment is characterized on the basis of PEAS (Performance,

Environment, Actuators, and Sensors).

Example:- an automated taxi driver.

Figure 1.3: PEAS description of the task environment for an automated taxi.

Performance measure:- includes getting to the correct destination; minimizing fuel

consumption and wear and tear; minimizing the trip time or cost; minimizing violations of traffic

laws and disturbances to other drivers; maximizing safety and passenger comfort; maximizing

profits.

Environment:- Any taxi driver must deal with a variety of roads, ranging from rural lanes and

urban alleys to 12-lane freeways. The roads contain other traffic, pedestrians, stray animals etc.

Actuators:- : control over the engine through the accelerator and control over steering and

Artificial Intelligence 22AI305

9 Dept. of CSE (AIML), MCE, Hassan

braking. In addition, it will need output to a display screen or voice synthesizer to talk back to

the passengers.

Sensors:- include one or more controllable video cameras so that it can see the road; it might

augment these with infrared or sonar sensors to detect distances to other cars and obstacles.

Basic PEAS elements for a number of additional agent types

Figure 1.4: Examples of agent types and their PEAS descriptions.

2) Properties of Task Environment

a) Fully observable vs Partially observable

b) Single-agent vs Multi-agent

c) Deterministic vs Stochastic

d) Episodic vs sequential

Artificial Intelligence 22AI305

10 Dept. of CSE (AIML), MCE, Hassan

e) Static vs Dynamic

f) Discrete vs Continuous

g) Known vs Unknown

a) Fully Observable vs Partially Observable

 If an agent sensor can sense or access the complete state of an environment at each point

of time then it is a fully observable environment, else it is partially observable.

 A fully observable environment is easy as there is no need to maintain the internal state to

keep track of the world.

 An agent with no sensors in all environments then such an environment is called as

unobservable.

b) Single-agent vs Multi-agent

 If only one agent is involved in an environment, and operating by itself then such an

environment is called single agent environment.

Ex: - crossword puzzle

 If multiple agents are operating in an environment, then such an environment is called

multi-agent environment.

Ex: - Chess

c) Deterministic vs Stochastic

 If an agent’s current state and selected action can completely determine the next state of

the environment, then such environment is called a deterministic environment.

 A stochastic environment is random in nature and cannot be determined completely by an

agent.

d) Episodic vs Sequential

 In an episodic environment, the agent’s experience is divided into atomic episodes. In

each episode the agent receives a percept and then performs a single action.

Ex: - an agent that has to spot effective parts on an assembly line bases each decision on

Artificial Intelligence 22AI305

11 Dept. of CSE (AIML), MCE, Hassan

the current part

 In a sequential environment the agent engages in a series of connected episodes.

Ex: - Chess and taxi driving are sequential

e) Static vs Dynamic

 If the environment can change itself while an agent is deliberating then such environment

is called a dynamic environment else it is called a static environment.

Ex: - Taxi driving

 Static environments are easy to deal because an agent does not need to continue looking

at the world while deciding for an action.

Ex: - Crossword puzzles

 If the environment itself does not change with the time but the agent’s performance score

does, then we say the environment is semi-dynamic.

Ex: - Chess, when played with a clock

f) Discrete vs Continuous

 If in an environment there are a finite number of percepts and actions that can be

performed within it, then such an environment is called a discrete environment else it is

called continuous environment.

 A chess game comes under discrete environment as there is a finite number of moves that

can be performed.

 A self-driving car is an example of a continuous environment.

g) Known vs Unknown

 Known and unknown are not actually a feature of an environment, but it is an agent’s

state of knowledge to perform an action.

 In a known environment, the results for all actions are known to the agent. While in

unknown environment, agent needs to learn how it works in order to perform an action.

 It is quite possible for a known environment to be partially observable and an unknown

environment can be fully observable.

Artificial Intelligence 22AI305

12 Dept. of CSE (AIML), MCE, Hassan

Figure 1.5: Examples of task environments and their characteristics.

The Structure of Agents

 The task of AI is to design an agent program which implements the agent function- the

mapping from percepts to actions.

 The structure of an intelligent agent is a combination of architecture and agent program.

It can be viewed as:

Agent = architecture + program

Agent Programs

 The agent programs take the current percept as input from the sensors and return an

action to the actuators.

 Simplest agent program is a TABLE-DRIVEN-AGENT

Artificial Intelligence 22AI305

13 Dept. of CSE (AIML), MCE, Hassan

Figure 1.6: The TABLE-DRIVEN-AGENT program is invoked for each new percept and

returns an action each time. It retains the complete percept sequence in memory.

Four basic kinds of Agent programs

a) Simple reflex agents

b) Model-based reflex agents

c) Goal-based agents

d) Utility-based agents

a) Simple Reflex Agent

 These agents select actions on the basis of the current percept, ignoring the rest of the

percept history.

 Works on condition-action rules:

If condition then action

 The agent will work only if the correct decision can be made on the basis of only the

current percept - work only if the environment is fully observable.

Figure 1.7: Schematic diagram of a simple reflex agent

Artificial Intelligence 22AI305

14 Dept. of CSE (AIML), MCE, Hassan

Figure 1.8: A simple reflex agent. It acts according to a rule whose condition matches the

current state, as defined by the percept.

b) Model-Based Reflex Agent

 The most effective way to handle partial observability is to keep track of the part of the

world it can’t see now.

 That is, the agent should maintain some sort of internal state that depends on the percept

history and thereby reflects at least some of the unobserved aspects of the current state.

 This can be done using two kinds of knowledge:-

 how the world evolves independently of the agent

 how the agent's own actions affect the world

Figure 1.9: A model-based reflex agent.

Artificial Intelligence 22AI305

15 Dept. of CSE (AIML), MCE, Hassan

Figure 1.10: A model-based reflex agent. It keeps track of the current state of the world, using

an internal model. It then chooses an action in the same way as the reflex agent

c) Goal-Based Agent

 Knowing the current state of the environment is not enough. The agent needs some goal

information.

Figure 1.11: A model-based, goal-based agent. It keeps track of the world state as well as a set

of goals it is trying to achieve, and chooses an action that will (eventually) lead to the

achievement of its goals.

d) Utility-Based Agent

 Sometimes achieving the desired goal is not enough. We may look for quicker, safer,

cheaper trip to reach a destination.

Artificial Intelligence 22AI305

16 Dept. of CSE (AIML), MCE, Hassan

 Agent happiness should be taken into consideration. We call it utility.

 A utility function is the agent’s performance measure.

 Because of the uncertainty in the world, a utility agent chooses the action that

maximizes the expected utility.

Figure 1.12: A model-based, utility-based agent. It uses a model of the world, along with a

utility function that measures its preferences among states of the world. Then it chooses the

action that leads to the best expected utility, where expected utility is computed by averaging

over all possible outcome states, weighted by the probability of the outcome.

Learning Agents

Figure 1.13: A general learning agent.

Artificial Intelligence 22AI305

17 Dept. of CSE (AIML), MCE, Hassan

A learning agent can be divided into four conceptual components

 Learning element: responsible for making improvements.

 Performance element: responsible for selecting external actions.

 Critic: how well the agent is doing w.r.t. a fixed performance standard.

 Problem generator: allows the agent to explore.

How the components of Agent Program works

1. Atomic Representation: each state of the world is indivisible—it has no internal

structure. Ex- finding a driving route from one end of a country to the other via some

sequence of cities, AI algorithms: search, games, Markov decision processes, Hidden

Markov models.

2. Factored Representation: splits up each state into a fixed set of variables or attributes,

each of which can have a value. Ex- GPS location, amount of gas in the tank, AI

algorithms: constraint satisfaction and Bayesian networks.

3. Structured Representation: relationships between the objects of a state can be

explicitly expressed. Ex- AI algorithms: first order logic, knowledge-based learning.

Figure 1.14: Three ways to represent states and the transitions between them. (a) Atomic

representation: a state (such as B or C) is a black box with no internal structure; (b) Factored

representation: a state consists of a vector of attribute values; values can be Boolean,

realvalued, or one of a fixed set of symbols. (c) Structured representation: a state includes

objects, each of which may have attributes of its own as well as relationships to other objects

Artificial Intelligence 22AI305

18 Dept. of CSE (AIML), MCE, Hassan

SOLVING PROBLEMS BY SEARCHING

Problem-Solving Agents

Romania Problem

Figure 1.15: A simplified road map of part of Romania

 Imagine an agent in the city of Arad, Romania, enjoying a touring holiday.

 The agent’s performance measure contains many factors:

 it wants to improve its suntan,

 improve its Romanian, take in the sights,

 enjoy the nightlife (such as it is),

 avoid hangovers, and so on.

 The agent has a nonrefundable ticket to fly out of Bucharest the following day.

 The agent observes that there are three roads leading out of Arad: one toward Sibiu, one

to Timisoara, and one to Zerind.

Artificial Intelligence 22AI305

19 Dept. of CSE (AIML), MCE, Hassan

Agent follows this four phase problem-solving process:

 Goal Formulation: the agent adopts the goal of reaching Bucharest.

 Problem Formulation: the agent devises a description of the states and actions

necessary to reach the goal. Agent considers the actions of travelling from one city to an

adjacent city; the only fact that will change due to an action is the current city.

 Search: before taking any action in the real world, the agent simulates sequences of

actions, searching until it finds a sequence of actions that reaches the goal. Such a

sequence is called solution.

 Execution: the agent can now execute the actions in the solution, one at a time.

Figure 1.16: A simple problem-solving agent. It first formulates a goal and a problem, searches

for a sequence of actions that would solve the problem, and then executes the actions one at a

time. When this is complete, it formulates another goal and starts over.

Well defined problems and solutions

A problem can be defined formally by five components:

 The initial state that the agent starts in. For example, the initial state for our agent in

Romania might be described as In(Arad).

 A description of the possible actions available to the agent. For example, from the state

In(Arad), the applicable actions are {Go(Sibiu), Go(Timisoara), Go(Zerind)}.

Artificial Intelligence 22AI305

20 Dept. of CSE (AIML), MCE, Hassan

 Transition model: a description of what each action does, specified by a function

RESULT(s, a) that returns the state that results from doing action a in state s. For

example, we have RESULT (In (Arad), Go (Zerind)) = In (Zerind) .

 The goal test, which determines whether a given state is a goal state.

 A path cost function that assigns a numeric cost to each path.

Example Problems

 Toy problem is intended to illustrate or exercise various problem-solving methods.

 A real-world problem is one whose solutions people actually care about.

Toy Problems

1) Vacuum world

This can be formulated as a problem as follows:

Figure 1.17: The state space for the vacuum world. Links denote actions: L = Left, R= Right, S=

Suck.

 States: The state is determined by both the agent location and the dirt locations. The

agent is in one of two locations, each of which might or might not contain dirt. Thus,

there are 2 × 22 = 8 possible world states. A larger environment with n locations has

Artificial Intelligence 22AI305

21 Dept. of CSE (AIML), MCE, Hassan

n · 2n states.

 Initial state: Any state can be designated as the initial state.

 Actions: In this simple environment, each state has just three actions: Left, Right, and

Suck. Larger environments might also include Up and Down.

 Transition model: The actions have their expected effects, except that moving Left in

the leftmost square, moving Right in the rightmost square, and Sucking in a clean square

have no effect.

 Goal test: This checks whether all the squares are clean.

 Path cost: Each step costs 1, so the path cost is the number of steps in the path.

2) The 8 puzzle

consists of a 3×3 board with eight numbered tiles and a blank space. A tile adjacent to the blank

space can slide into the space. The object is to reach a specified goal state, such as the one shown

on the right of the figure. The standard formulation is as follows:

Figure 1.18: A typical instance of the 8-puzzle.

 States: specifies the location of each of the 8 tiles and the blank in one of the nine

squares.

 Initial state: Any state can be designated as the initial state.

 Actions: defines the actions as movements of the blank space Left, Right, Up, or Down.

Different subsets of these are possible depending on where the blank is.

 Transition model: Given a state and action, this returns the resulting state; for example,

if we apply Left to the start in Figure 1.18, the resulting state has the 5 and the blank

Artificial Intelligence 22AI305

22 Dept. of CSE (AIML), MCE, Hassan

switched.

 Goal test: This checks whether the state matches the goal configuration shown in Figure

1.18. (Other goal configurations are possible.)

 Path cost: Each step costs 1, so the path cost is the number of steps in the path.

3) The 8-queens problem

The goal is to place eight queens on a chessboard such that no queen attacks any other.

Figure 1.19: solution to the 8-queens problem.

 States: Any arrangement of 0 to 8 queens on the board is a state.

 Initial state: No queens on the board.

 Actions: Add a queen to any empty square.

 Transition model: Returns the board with a queen added to the specified square.

 Goal test: 8 queens are on the board, none attacked.

4) Final toy problem was devised by Donald Knuth (1964)

Illustrates how infinite state spaces can arise. Knuth conjectured that, starting with the number 4,

a sequence of factorial, square root, and floor operations will reach any desired positive integer.

Artificial Intelligence 22AI305

23 Dept. of CSE (AIML), MCE, Hassan

For example, we can reach 5 from 4 as follows:

The problem definition is very simple:

 States: Positive numbers.

 Initial state: 4.

 Actions: Apply factorial, square root, or floor operation (factorial for integers only).

 Transition model: As given by the mathematical definitions of the operations.

 Goal test: State is the desired positive integer.

Real-world Problems

 Route-finding problem

 airline travel problem

 Touring problems

 traveling salesperson problem (TSP)

 A VLSI layout problem

 Robot navigation

 Automatic assembly sequencing

Consider the airline travel problems that must be solved by a travel-planning Web site:

 States: Each state obviously includes a location (e.g., an airport) and the current time.

Furthermore, because the cost of an action (a flight segment) may depend on previous

segments, their fare bases, and their status as domestic or international, the state must

record extra information about these “historical” aspects.

 Initial state: This is specified by the user’s query.

 Actions: Take any flight from the current location, in any seat class, leaving after the

current time, leaving enough time for within-airport transfer if needed.

 Transition model: The state resulting from taking a flight will have the flight’s

destination as the current location and the flight’s arrival time as the current time.

 Goal test: Are we at the final destination specified by the user?

 Path cost: This depends on monetary cost, waiting time, flight time, customs and

immigration procedures, seat quality, time of day, type of airplane, and so on

Artificial Intelligence 22AI305

24 Dept. of CSE (AIML), MCE, Hassan

Searching for solution

 A solution is an action sequence, so search algorithms work by considering various

possible action sequences.

 The possible action sequences starting at the initial state form a search tree with the initial

state at the root; the branches are actions and the nodes correspond to states in the state

space of the problem.

 Expanding the current state.

 Generating a new set of states.

 Current state - parent node In(Arad)

 child nodes: In(Sibiu), In(Timisoara), and In(Zerind)

 Leaf node, that is, a node with no children in the tree.

 The set of all leaf nodes available for expansion at any given point is called the frontier.

 how they choose which state to expand next—the so-called search strategy

 repeated state in the search tree - a loopy path.

Figure 1.20: An informal description of the general tree-search and graph-search algorithms.

The parts of GRAPH-SEARCH marked in bold italic are the additions needed to handle repeated

states.

Artificial Intelligence 22AI305

25 Dept. of CSE (AIML), MCE, Hassan

1) Infrastructure for search algorithms

For each node n of the tree, we have a structure that contains four components:

 n.STATE: the state in the state space to which the node corresponds;

 n.PARENT: the node in the search tree that generated this node;

 n.ACTION: the action that was applied to the parent to generate the node;

 n.PATH-COST: the cost, traditionally denoted by g(n), of the path from the initial state

to the node, as indicated by the parent pointers.

2) Measuring problem-solving performance

We can evaluate an algorithm’s performance in four ways:

 Completeness: Is the algorithm guaranteed to find a solution when there is one?

 Optimality: Does the strategy find the optimal solution, as defined on page 68?

 Time complexity: How long does it take to find a solution?

 Space complexity: How much memory is needed to perform the search?

Uninformed search strategies:

These strategies have no additional information about states beyond that provided in the problem

definition. Hence it is also called as Blind Search.

1. Breadth-first search

2. Uniform-cost search

3. Depth-first search

4. Depth-limited search

5. Iterative deepening depth-first search

6. Bidirectional search

1) Breadth First Search

 Breadth-first search is a simple strategy in which the root node is expanded first, then all

the successors of the root node are expanded next, then their successors, and so on.

 Breadth-first search is an instance of the general graph-search algorithm in which the

shallowest unexpanded node is chosen for expansion.

Artificial Intelligence 22AI305

26 Dept. of CSE (AIML), MCE, Hassan

 This is achieved very simply by using a FIFO queue for the frontier.

 Thus, new nodes go to the back of the queue, and old nodes, which are shallower than the

new nodes, get expanded first.

Figure 1.21: Breadth-first search on a graph.

Figure 1.22: Breadth-first search on a simple binary tree. At each stage, the node to be expanded

next is indicated by a marker.

Properties of BFS

 Complete - if the shallowest goal node is at some finite depth d, breadth-first search will

eventually find it after generating all shallower nodes

 Optimal - optimal if the path cost is a non-decreasing function of the depth of the node

(all actions have the same cost)

 Time Complexity – 1+b+b2+b3+…..+bd = O (bd)

 Space Complexity - O (bd)

Artificial Intelligence 22AI305

27 Dept. of CSE (AIML), MCE, Hassan

2) Uniform Cost Search

 Expands the node n with the lowest path cost g(n).

 This is done by storing the frontier as a priority queue ordered by g.

Figure 1.23: Uniform-cost search on a graph.

Figure 1.24: Part of the Romania state space, selected to illustrate uniform-cost search

 The problem is to get from Sibiu to Bucharest.

 The successors of Sibiu are Rimnicu Vilcea and Fagaras, with costs 80 and 99,

respectively.

 The least-cost node, Rimnicu Vilcea, is expanded next, adding Pitesti with cost 80 + 97

= 177.

Artificial Intelligence 22AI305

28 Dept. of CSE (AIML), MCE, Hassan

 The least-cost node is now Fagaras, so it is expanded, adding Bucharest with cost 99 +

211 = 310.

 Now a goal node has been generated, but uniform-cost search keeps going, choosing

Pitesti for expansion and adding a second path to Bucharest with cost 80+ 97+ 101 = 278.

 Now the algorithm checks to see if this new path is better than the old one; it is, so the

old one is discarded. Bucharest, now with g-cost 278, is selected for expansion and the

solution is returned.

Properties of UCS

 Completeness – is guaranteed provided the cost of every step exceeds some small

positive constant €.

 Optimal - uniform-cost search is optimal in general.

 Time Complexity – O (b1+[C * / €])

 Space Complexity - O (b1+[C * / €])

3) Depth First Search

 Depth-first search always expands the deepest node in the current frontier of the search

tree.

 The search proceeds immediately to the deepest level of the search tree, where the nodes

have no successors.

 As those nodes are expanded, they are dropped from the frontier, so then the search

“backs up” to the next deepest node that still has unexplored successors.

 The depth-first search algorithm is an instance of the graph-search algorithm, whereas

breadth-first-search uses a FIFO queue, depth-first search uses a LIFO queue.

 A LIFO queue means that the most recently generated node is chosen for expansion.

Properties of DFS

 Completeness – is complete in finite state spaces because it will eventually expand every

node.

Artificial Intelligence 22AI305

29 Dept. of CSE (AIML), MCE, Hassan

 Optimal – DFS is not optimal, as it may generate a large number of steps or high cost to

reach the goal node.

 Time Complexity – O (bm)

Where, m = maximum depth of any node and this can be much larger than d

 Space Complexity - O (bm)

Figure 1.25: Depth-first search on a binary tree. The unexplored region is shown in light gray.

Explored nodes with no descendants in the frontier are removed from memory. Nodes at depth 3

have no successors and M is the only goal node.

4) Depth-Limited Search

 The failure of depth-first search in infinite state spaces can be alleviated by supplying

depth-first search with a pre-determined depth limit l.

Artificial Intelligence 22AI305

30 Dept. of CSE (AIML), MCE, Hassan

 That is, nodes at depth l are treated as if they have no successors.

 This approach is called depth-limited search.

Figure 1.26: A recursive implementation of depth-limited tree search.

Properties of DLS

 Completeness – DLS is complete if the solution is above the depth-limit. Otherwise,

incomplete.

 Optimal – not optimal even if l > d

 Time Complexity – O (bl)

 Space Complexity – O (b x l)

5) Iterative Deepening Depth-First Search

 Iterative deepening search (or iterative deepening depth-first search) is a general strategy,

often used in combination with depth-first tree search, that finds the best depth limit.

 It does this by gradually increasing the limit—first 0, then 1, then 2, and so on—until a

goal is found.

 This will occur when the depth limit reaches d, the depth of the shallowest goal node.

Artificial Intelligence 22AI305

31 Dept. of CSE (AIML), MCE, Hassan

Figure 1.27: The iterative deepening search algorithm, which repeatedly applies depthlimited

search with increasing limits. It terminates when a solution is found or if the depthlimited search

returns failure, meaning that no solution exists.

Figure 1.28: Four iterations of iterative deepening search on a binary tree.

Artificial Intelligence 22AI305

32 Dept. of CSE (AIML), MCE, Hassan

Properties of IDDFS

 Completeness – Yes

 Optimal – Yes

 Time Complexity – O (bd)

 Space Complexity – O (b x d)

6) Bidirectional Search

 The idea behind bidirectional search is to run two simultaneous searches—one forward

from the initial state and the other backward from the goal—hoping that the two searches

meet in the middle.

 The motivation is that b d/2 + b d/2
 is much less than bd.

Properties of BS

 Completeness – Yes

 Optimal – Yes

 Time Complexity – O (b d/2)

 Space Complexity – O (b d/2)

	WhatisAI?
	The definitions of AI:
	Figure 1: Some definitions of artificial intelligence, organized into four categories.
	1)Acting humanly: The Turing Test approach
	2) Thinking humanly: The cognitive modeling approach
	If we are going to say that a given program thinks like a human, we must have some way of determining how humans think.
	There are three ways to do this:
	 introspection - trying to catch our own thoughts as they go by;
	 psychological experiments - observing a person in action;
	 brain imaging - observing the brain in action.
	Once we have a sufficiently precise theory of the mind, it becomes possible to express the theory as a computer program.
	This can be achieved through cognitive science
	Cognitive AI discuss the theories about how human mind works– for example, theories about how we recognize faces and other objects, or about how we solve abstract problem.
	3) Thinking Rationally: The “Laws of thought” approach
	 The Greek philosopher Aristotle was one of the first to attempt to codify “right thinking,” that is, irrefutable reasoning processes.
	 His syllogisms provided patterns for argument structures that always yielded correct conclusions when given correct premises.
	 example, “Socrates is a man; all men are mortal; therefore, Socrates is mortal.”
	 These laws of thought were supposed to govern the operation of the mind; their study initiated the field called logic.
	4)Acting Rationally: The Rational Agent approach
	Agent:
	Percept Sequence:
	Agent function:
	Agent function

