
Digital Design and Computer Organization 

Module 1:  

Number Systems and Codes: Binary Number system, Binary to decimal, decimal to binary, hexa decimal, 

ASCII code, Excess,3 Code, Gray code. Digital Logic: The Basic Gates, NOT, OR, AND, Universal Logic 

Gates, NOR, NAND. 

Combinatorial Logic Circuits: Boolean Laws and Theorems. , Sum of Products method ,Truth table to 

Karnaugh Map – Pairs, Quads, Octets – Don’t Care Conditions Product of sums method , Product of sums 

Simplifications 

Combinational Circuits –Analysis and Design Procedures, Binary Adder, Subtractor, Decimal Adder, 

Magnitude Comparator, Decoder, Encoder, Multiplexers, Demultiplexers 

 

Number Systems and Codes 

Number Systems 

In a digital system, the system can understand only the optional number system. In these systems, digits 

symbols are used to represent different values, depending on the index from which it settled in the number 

system. 

Types of Number System 

In the digital computer, there are various types of 

number systems used for representing information. 

1. Binary Number System 

2. Decimal Number System 

3. Hexadecimal Number System 

4. Octal Number System 

 

Binary Number system 

• A binary number system is used in the digital computers. In this number system, it carries only two digits, 

either 0 or 1. 

• There are two types of electronic pulses present in a binary number system. 

i. the absence of an electronic pulse representing '0'. 

ii. the presence of electronic pulse representing '1'. 

• Each digit is known as a bit. 

• A four-bit collection (1101) is known as a nibble. 

• A collection of eight bits (11001010) is known as a byte. 

 

 

Characteristics: 

 



1. It holds only two values, i.e., either 0 or 1. 

2. It is also known as the base 2 number system. 

3. The position of a digit represents the 0 power of the base(2). Example: 20 

4. The position of the last digit represents the x power of the base(2). Example: 2x, where x represents 

the last position, i.e., 1 

 

Decimal Number System 
• The decimal number system contains ten digits from 0 to 9(base 10). 

• Here, the successive place value or position, left to the decimal point holds units, tens, hundreds, 

thousands, and so on. 

• The position in the decimal number system specifies the power of the base (10). The 0 is the minimum 

value of the digit, and 9 is the maximum value of the digit.  

• For example, the decimal number 2541 consist of the digit 1 in the unit position, 4 in the tens 

position, 5 in the hundreds position, and 2 in the thousand positions and the value will be written 

as: 

(2×1000) + (5×100) + (4×10) + (1×1) 

(2×103) + (5×102) + (4×101) + (1×100) 

2000 + 500 + 40 + 1 

254 

 

Octal Number System 

• The octal number system has base 8(means it has only eight digits from 0 to 7). 

• With the help of only three bits, an octal number is represented.  Each set of bits has a distinct value 

between 0 and 7. 

Characteristics: 

1. An octal number system carries eight digits starting from 0, 1, 2, 3, 4, 5, 6, and 7. 

2. It is also known as the base 8 number system. 

3. The position of a digit represents the 0 power of the base(8). Example: 80 

4. The position of the last digit represents the x power of the base(8). Example: 8x, where x represents 

the last position, i.e., 1 

Number Octal Number 

0 000 

1 001 

2 010 

3 011 

Examples: 

(273)8, (5644)8, (0.5365)8, (1123)8, (1223)8. 

 



4 100 

5 101 

6 110 

7 111 

 

Hexadecimal Number System 
• The number system has a base of 16 means there are total 16 symbols(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, 

E, F) used for representing a number. 

• The single-bit representation of decimal values10, 11, 12, 13, 14, and 15 are represented by A, B, C, D, E, 

and F. 

• Only 4 bits are required for representing a number in a hexadecimal number. 

• Each set of bits has a distinct value between 0 and 15. 

Characteristics: 

1. It has ten digits from 0 to 9 and 6 letters from A to F. 

2. The letters from A to F defines numbers from 10 to 15. 

3. It is also known as the base 16number system. 

4. In hexadecimal number, the position of a digit represents the 0 power of the base(16). Example: 160 

5. In hexadecimal number, the position of the last digit represents the x power of the base(16). 

Example: 16x, where x represents the last position, i.e., 1 

Binary Number Hexadecimal Number 

0000 0 

0001 1 

0010 2 

0011 3 

0100 4 

0101 5 

0110 6 

0111 7 

1000 8 

1001 9 

1010 A 

1011 B 

1100 C 

1101 D 

1110 E 

1111 F 

 

Examples: 

(FAC2)16, (564)16, (0ABD5)16, (1123)16, (11F3)16. 

 



Number Base Conversion 

1. Binary to other Number Systems. 

2. Decimal to other Number Systems. 

3. Octal to other Number Systems. 

4. Hexadecimal to other Number Systems. 

 

 

➢ Binary to Decimal Conversion 
• The process starts from multiplying the bits of binary number with its corresponding positional weights. 

And lastly, we add all those products. 

Example 1: (10110.001)2 

We multiplied each bit of (10110.001)2 with its respective positional weight, and last we add the 

products of all the bits with its weight. 

(10110.001)2=(1×24)+(0×23)+(1×22)+(1×21)+ (0×20)+     (0×2-1)+(0×2-2)+(1×2-3) 

              

(10110.001)2=(1×16)+(0×8)+(1×4)+(1×2)+ (0×1)+          (0×1⁄2)+(0×1⁄4)+(1×1⁄8) 

              

(10110.001)2=16+0+4+2+0+0+0+0.125 

(10110.001)2=(22.125 )10 

 

 

➢ Decimal to other Number System 



The decimal number can be an integer or floating-point integer. When the decimal number is a floating-

point integer, then we convert both part (integer and fractional) of the decimal number in the isolated 

form(individually). There are the following steps that are used to convert the decimal number into a 

similar number of any base 'r'. 

1. In the first step, we perform the division operation on integer and successive part with base 'r'. 

We will list down all the remainders till the quotient is zero. Then we find out the remainders in 

reverse order for getting the integer part of the equivalent number of base 'r'. In this, the least 

and most significant digits are denoted by the first and the last remainders. 

2. In the next step, the multiplication operation is done with base 'r' of the fractional and successive 

fraction. The carries are noted until the result is zero or when the required number of the 

equivalent digit is obtained. For getting the fractional part of the equivalent number of base 'r', 

the normal sequence of carrying is considered. 

 

Decimal to Binary Conversion 

For converting decimal to binary, there are two steps required to perform, which are as follows: 

1. In the first step, we perform the division operation on the integer and the successive quotient with 

the base of binary(2). 

2. Next, we perform the multiplication on the integer and the successive quotient with the base of 

binary(2). 

Example 1: (152.25)10 

Step 1: 

Divide the number 152 and its successive quotients with base 2. 

Operation Quotient Remainder 

152/2 76 0 (LSB) 

76/2 38 0 

38/2 19 0 

19/2 9 1 

9/2 4 1 

4/2 2 0 

2/2 1 0 

1/2 0 1(MSB) 

(152)10= (10011000)2 

 

Step 2: 



Now, perform the multiplication of 0.27 and successive fraction with base 2. 

 

 

 

(0.25)10= (.01)2 

 

• Hexa-decimal to Decimal Conversion 

The process of converting hexadecimal to decimal is the same as binary to decimal. The process starts 

from multiplying the digits of hexadecimal numbers with its corresponding positional weights. And 

lastly, we add all those products.  

Let's take an example to understand how the conversion is done from hexadecimal to decimal. 

  Example 1: (152A.25)16 

 

Step 1: 

We multiply each digit of 152A.25 with its respective positional weight, and last we add the products 

of all the bits with its weight. 

(152A.25)16=(1×163)+(5×162)+(2×161)+(A×160)+(2×16-1)+(5×16-2) 

(152A.25)16=(1×4096)+(5×256)+(2×16)+(10×1)+(2×16-1)+(5×16-2) 

(152A.25)16=4096+1280+32+10+(2×1⁄16)+(5×1⁄256) 

(152A.25)16=5418+0.125+0.125 

(152A.25)16=5418.14453125 

So, the decimal number of the hexadecimal number 152A.25 is 5418.14453125 

 

• Hexadecimal to Binary Conversion 

The process of converting hexadecimal to binary is the reverse process of binary to hexadecimal. 

We write the four bits binary code of each hexadecimal number digit. 

   Example 1: (152A.25)16 

 

We write the four-bit binary digit for 1, 5, A, 2, and 5. 

(152A.25)16= (0001 0101 0010 1010.0010 0101)2 

So, the binary number of the hexadecimal number 152.25 is (1010100101010.00100101)2 

 

 

 

 

 

Operation Result carry 

0.25×2 0.50 0 

0.50×2 0 1 



ASCII Code 

• The ASCII stands for American Standard Code for Information Interchange. 

• The ASCII code is an alphanumeric code used for data communication in digital computers. 

• The ASCII is a 7-bit code capable of representing 27 or 128 number of different characters.  

• The ASCII code is made up of a three-bit group, which is followed by a four-bit code. 

 

 

 

 

 

• The ASCII code starts from 00h to 7Fh. In this, the code from 00h to 1Fh is used for control 

characters, and the code from 20h to 7Fh is used for graphic symbols. 

• The 8-bit code holds ASCII, which supports 256 symbols where math and graphic symbols are 

added. 

• The range of the extended ASCII is 80h to FFh. 

 

Control Characters 
The non-printable characters used for sending commands to the PC or printer are known as control 

characters. We can set tabs, and line breaks functionality by this code. The control characters are based 

on telex technology. Nowadays, it's not so much popular in use. The character from 0 to 31 and 127 

comes under control characters. 

Special Characters 
All printable characters that are neither numbers nor letters come under the special characters. These 

characters contain technical, punctuation, and mathematical characters with space also. The character 

from 32 to 47, 58 to 64, 91 to 96, and 123 to 126 comes under this category. 

Numbers Characters 
This category of ASCII code contains ten Arabic numerals from 0 to 9. 



Letters Characters 
In this category, two groups of letters are contained, i.e., the group of uppercase letters and the group 

of lowercase letters. The range from 65 to 90 and 97 to 122 comes under this category. 

Excess-3 Code 
The excess-3 code is also treated as XS-3 code. The excess-3 code is a non-weighted and self-

complementary BCD code used to represent the decimal numbers. This code has a biased 

representation. This code plays an important role in arithmetic operations because it resolves 

deficiencies encountered when we use the 8421 BCD code for adding two decimal digits whose sum is 

greater than 9. The Excess-3 code uses a special type of algorithm, which differs from the binary 

positional number system or normal non-biased BCD. 

We can easily get an excess-3 code of a decimal number by simply adding 3 to each decimal digit. And 

then we write the 4-bit binary number for each digit of the decimal number. We can find the excess-3 

code of the given binary number by using the following steps: 

1. We find the decimal number of the given binary number. 

2. Then we add 3 in each digit of the decimal number. 

3. Now, we find the binary code of each digit of the newly generated decimal number. 

We can also add 0011 in each 4-bit BCD code of the decimal number for getting excess-3 code. 

The Excess-3 code for the decimal number is as follows: 

Decimal Digit BCD Code Excess-3 Code 

0 0000 0011 

1 0001 0100 

2 0010 0101 

3 0011 0110 

4 0100 0111 

5 0101 1000 

6 0110 1001 

7 0111 1010 

8 1000 1011 

9 1001 1100 

 



Gray Code 
The Gray Code is a sequence of binary number systems, which is also known as reflected binary code. 

The reason for calling this code as reflected binary code is the first N/2 values compared with those of 

the last N/2 values in reverse order. In this code, two consecutive values are differed by one bit of binary 

digits. Gray codes are used in the general sequence of hardware-generated binary numbers. These 

numbers cause ambiguities or errors when the transition from one number to its successive is done. This 

code simply solves this problem by changing only one bit when the transition is between numbers is 

done. 

The gray code is a very light weighted code because it doesn't depend on the value of the digit specified 

by the position. This code is also called a cyclic variable code as the transition of one value to its 

successive value carries a change of one bit only. 

 

How to generate Gray code? 
The prefix and reflect method are recursively used to generate the Gray code of a number. For generating 

gray code: 

1. We find the number of bits required to represent a number. 

2. Next, we find the code for 0, i.e., 0000, which is the same as binary. 

3. Now, we take the previous code, i.e., 0000, and change the most significant bit of it. 

4. We perform this process reclusively until all the codes are not uniquely identified. 

5. If by changing the most significant bit, we find the same code obtained previously, then the second most 

significant bit will be changed, and so on. 

 

 

 

 



Process of generating Gray Code 
 

 
 

 

 

 

 

 



Gray Code Table 
 

Decimal Number Binary Number Gray Code 

0 0000 0000 

1 0001 0001 

2 0010 0011 

3 0011 0010 

4 0100 0110 

5 0101 0111 

6 0110 0101 

7 0111 0100 

8 1000 1100 

9 1001 1101 

10 1010 1111 

11 1011 1110 

12 1100 1010 

13 1101 1011 

14 1110 1001 

15 1111 1000 

 

 

 



Digital Logic: 

The Basic Gates 

The basic gates are AND, OR & NOT gates. 

AND gate 
 

An AND gate is a digital circuit that has two or more inputs and produces an output, which is the 

logical AND of all those inputs. It is optional to represent the Logical AND with the symbol ‘.’. 

The following table shows the truth table of 2-input AND gate. 
 

A B Y = A.B 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

Here A, B are the inputs and Y is the output of two input AND gate. If both inputs are ‘1’, then only the 

output, Y is ‘1’. For remaining combinations of inputs, the output, Y is ‘0’. 

The following figure shows the symbol of an AND gate, which is having two inputs A, B and one output, 

Y. 
 

 

This AND gate produces an output (Y), which is the logical AND of two inputs A, B. Similarly, if there 

are ‘n’ inputs, then the AND gate produces an output, which is the logical AND of all those inputs. That 

means, the output of AND gate will be ‘1’, when all the inputs are ‘1’. 

OR gate 
 

An OR gate is a digital circuit that has two or more inputs and produces an output, which is the logical 

OR of all those inputs. This logical OR is represented with the symbol ‘+’. 

The following table shows the truth table of 2-input OR gate. 
 

A B Y = A + B 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

Here A, B are the inputs and Y is the output of two input OR gate. If both inputs are ‘0’, then only the 

output, Y is ‘0’. For remaining combinations of inputs, the output, Y is ‘1’. 

 



The following figure shows the symbol of an OR gate, which is having two inputs A, B and one output, Y. 
 

 
This OR gate produces an output (Y), which is the logical OR of two inputs A, B. Similarly, if there are ‘n’ 

inputs, then the OR gate produces an output, which is the logical OR of all those inputs. That means, the 

output of an OR gate will be ‘1’, when at least one of those inputs is ‘1’. 

 

NOT gate 
 

A NOT gate is a digital circuit that has single input and single output. The output of NOT gate is the 

logical inversion of input. Hence, the NOT gate is also called as inverter. 

The following table shows the truth table of NOT gate. 

 

A Y = A’ 

0 1 

1 0 

Here A and Y are the input and output of NOT gate respectively. If the input, A is ‘0’, then the output, Y 

is ‘1’. Similarly, if the input, A is ‘1’, then the output, Y is ‘0’. 

The following figure shows the symbol of NOT gate, which is having one input, A and one output, Y. 
 

 
This NOT gate produces an output (Y), which is the complement of input, A. 

 

Universal gates 
 

NAND & NOR gates are called as universal gates. Because we can implement any Boolean function, 

which is in sum of products form by using NAND gates alone. Similarly, we can implement any Boolean 

function, which is in product of sums form by using NOR gates alone. 

 

NAND gate 
 

NAND gate is a digital circuit that has two or more inputs and produces an output, which is the 

inversion of logical AND of all those inputs. 

The following table shows the truth table of 2-input NAND gate. 

 

 

 
 



A B Y = (A.B)’ 

0 0 1 

0 1 1 

1 0 1 

1 1 0 

Here A, B are the inputs and Y is the output of two input NAND gate. When both inputs are ‘1’, the output, 

Y is ‘0’. If at least one of the input is zero, then the output, Y is ‘1’. This is just opposite to that of two input 

AND gate operation. 

The following image shows the symbol of NAND gate, which is having two inputs A, B and one output, Y. 
 

 
NAND gate operation is same as that of AND gate followed by an inverter. That’s why the NAND gate 

symbol is represented like that. 

 

NOR gate 
 

NOR gate is a digital circuit that has two or more inputs and produces an output, which is the 

inversion of logical OR of all those inputs. 

The following table shows the truth table of 2-input NOR gate 
 

A B Y = (A+B)’ 

0 0 1 

0 1 0 

1 0 0 

1 1 0 

Here A, B are the inputs and Y is the output. If both inputs are ‘0’, then the output, Y is ‘1’. If at least one of 

the input is ‘1’, then the output, Y is ‘0’. This is just opposite to that of two input OR gate operation. 

The following figure shows the symbol of NOR gate, which is having two inputs A, B and one output, Y. 
 

 
NOR gate operation is same as that of OR gate followed by an inverter. That’s why the NOR gate symbol 

is represented like that. 
 

 

 

 



COMBINATIONAL LOGIC CIRCUIT 

Boolean Laws and Theorems 

Boolean Algebra is an algebra, which deals with binary numbers & binary variables. Hence, it is also 

called as Binary Algebra or logical Algebra. A mathematician, named George Boole had developed this 

algebra in 1854. The variables used in this algebra are also called as Boolean variables. 

The range of voltages corresponding to Logic ‘High’ is represented with ‘1’ and the range of voltages 

corresponding to logic ‘Low’ is represented with ‘0’. 

Postulates and Basic Laws of Boolean Algebra 

In this section, let us discuss about the Boolean postulates and basic laws that are used in Boolean algebra. 

These are useful in minimizing Boolean functions. 
 

Boolean Postulates 

Consider the binary numbers 0 and 1, Boolean variable (x) and its complement (x’). Either the Boolean 

variable or complement of it is known as literal. The four possible logical OR operations among these 

literals and binary numbers are shown below. 

x + 0 = x 

 x + 1 = 1 

x + x = x 

 x + x’ = 1 

Similarly, the four possible logical AND operations among those literals and binary numbers are shown 

below. 

x.1 = x 

x.0 = 0 

x.x = x 

 x.x’ = 0 

These are the simple Boolean postulates. We can verify these postulates easily, by substituting the Boolean 

variable with ‘0’ or ‘1’. 

Note− The complement of complement of any Boolean variable is equal to the variable itself. i.e., 

(x’)’=x. 

 

 

Basic Laws of Boolean Algebra 
 

Following are the three basic laws of Boolean Algebra. 

 

• Commutative law 

• Associative law 

• Distributive law 

 

 

 

 



 

Commutative Law 

If any logical operation of two Boolean variables give the same result irrespective of the order of 

those two variables, then that logical operation is said to be Commutative. The logical OR & logical AND 

operations of two Boolean variables x & y are shown below 

x + y = y + x 

x.y = y.x 

The symbol ‘+’ indicates logical OR operation. Similarly, the symbol ‘.’ indicates logical AND operation 

and it is optional to represent. Commutative law obeys for logical OR & logical AND operations. 

 

 

Associative Law 

If a logical operation of any two Boolean variables is performed first and then the same operation is 

performed with the remaining variable gives the same result, then that logical operation is said to be 

Associative. The logical OR & logical AND operations of three Boolean variables x, y & z are shown 

below. 

x + (y + z) = (x + y) + z  

x.(y.z) = (x.y).z 

Associative law obeys for logical OR & logical AND operations. 

 

Distributive Law 

If any logical operation can be distributed to all the terms present in the Boolean function, then that 

logical operation is said to be Distributive. The distribution of logical OR & logical AND operations of 

three Boolean variables x, y & z are shown below. 

x.(y + z) = x.y + x.z 

x + (y.z) = (x + y).(x + z) 

 

Distributive law obeys for logical OR and logical AND operations. 

These are the Basic laws of Boolean algebra. We can verify these laws easily, by substituting the Boolean 

variables with ‘0’ or ‘1’. 
 

 

 

 

 



 

Theorems of Boolean Algebra 
 

The following two theorems are used in Boolean algebra. 

 

• Duality theorem 

• DeMorgan’s theorem 

 

 

Duality Theorem 

This theorem states that the dual of the Boolean function is obtained by interchanging the logical 

AND operator with logical OR operator and zeros with ones. For every Boolean function, there will be a 

corresponding Dual function. 

Let us make the Boolean equations (relations) that we discussed in the section of Boolean postulates and 

basic laws into two groups. The following table shows these two groups. 

 

Group1 Group2 

x + 0 = x x.1 = x 

x + 1 = 1 x.0 = 0 

x + x = x x.x = x 

x + x’ = 1 x.x’ = 0 

x + y = y + x x.y = y.x 

x + (y + z) = (x + y) + z x.(y.z) = (x.y).z 

x.(y + z) = x.y + x.z x + (y.z) = (x + y).(x + z) 

 

In each row, there are two Boolean equations and they are dual to each other. We can verify all these Boolean 

equations of Group1 and Group2 by using duality theorem. 

 

 

 

 



 

DeMorgan’s Theorem 
 

This theorem is useful in finding the complement of Boolean function. It states that the complement 

of logical OR of at least two Boolean variables is equal to the logical AND of each complemented variable. 

DeMorgan’s theorem with 2 Boolean variables x and y can be represented as 

(x + y)’ = x’.y’ 

The dual of the above Boolean function is 

(x.y)’ = x’ + y’ 

Therefore, the complement of logical AND of two Boolean variables is equal to the logical OR of each 

complemented variable. Similarly, we can apply DeMorgan’s theorem for more than 2 Boolean variables 

also. 
 

Simplification of Boolean Functions 
 

Till now, we discussed the postulates, basic laws and theorems of Boolean algebra. 

Now, let us simplify some Boolean functions. 

 

Eg 

Let us simplify the Boolean function, f = p’qr + pq’r + pqr’ + pqr We can 

simplify this function in two methods. 

Method 1 

Given Boolean function, f = p’qr + pq’r + pqr’ +pqr. 

Step 1 − In first and second terms r is common and in third and fourth terms pq is common. So, take the 

common terms by using Distributive law. 

⇒ f = (p’q + pq’) r + pq(r’ + r) 

Step 2 − The terms present in first parenthesis can be simplified to Ex-OR operation. The terms present 

in second parenthesis can be simplified to ‘1’ using Boolean postulate 

⇒ f = (p ⊕q) r + pq(1) 

Step 3 − The first term can’t be simplified further. But, the second term can be simplified to pq using 

Boolean postulate. 

     ⇒ f = (p ⊕q)r + pq  

 

Therefore, the simplified Boolean function is 

 f = (p⊕q)r + pq 

 

 

 



 

Method 2 

Given Boolean function, f = p’qr + pq’r + pqr’ + pqr. 

Step 1 − Use the Boolean postulate, x + x = x. That means, the Logical OR operation with any Boolean 

variable ‘n’ times will be equal to the same variable. So, we can write the last term pqr two more times. 

⇒ f = p’qr + pq’r + pqr’ + pqr + pqr + pqr 

Step 2 − Use Distributive law for 1st and 4th terms, 2nd and 5th terms, 3rd and 6th terms. 

⇒ f = qr(p’ + p) + pr(q’ + q) + pq(r’ + r) 

Step 3 − Use Boolean postulate, x + x’ = 1 for simplifying the terms present in each parenthesis. 

⇒ f = qr(1) + pr(1) + pq(1) 

Step 4 − Use Boolean postulate, x.1 = x for simplifying the above three terms. 

⇒ f = qr + pr + pq 

⇒ f = pq + qr + pr Therefore, the 

simplified Boolean function is f = pq + qr + pr. 

So, we got two different Boolean functions after simplifying the given Boolean function in each method. 

Functionally, those two Boolean functions are same. So, based on the requirement, we can choose one of 

those two Boolean functions. 

 

Eg 

Let us find the complement of the Boolean function, f = p’q + pq’. 

The complement of Boolean function is f’ = (p’q + pq’)’. 

 

Step 1 − Use DeMorgan’s theorem, (x + y)’ = x’.y’. 

⇒ f’ = (p’q)’.(pq’)’ 

Step 2 − Use DeMorgan’s theorem, (x.y)’ = x’ + y’ 

⇒ f’ = {(p’)’ + q’}.{p’ + (q’)’} 

Step3 − Use the Boolean postulate, (x’)’=x. 

⇒ f’ = {p + q’}.{p’ + q} 

⇒ f’ = pp’ + pq + p’q’ + qq’ 

Step 4 − Use the Boolean postulate, xx’=0. 

⇒ f = 0 + pq + p’q’ + 0 

⇒ f = pq + p’q’ 

Therefore, the complement of Boolean function, p’q + pq’ is pq + p’q’. 

 

 



 

Sum of product Method(SOP) 
 

A canonical sum of products is a boolean expression that entirely consists of minterms. The Boolean 

function F is defined on two variables X and Y. The X and Y are the inputs of the boolean function F whose 

output is true when any one of the inputs is set to true. The truth table for Boolean Expression F is as follows: 

 

Inputs Output 

X Y F 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

 

 

we can form the minterm from the variable's value. Now, a column will be added for the minterm in 

the above table. The complement of the variables is taken whose value is 0, and the variables whose value 

is 1 will remain the same. 

 

Inputs 
 

Output Minterm 

X Y F M 

0 0 0 X'Y' 

0 1 1 X'Y 

1 0 1 XY' 

1 1 1 XY 

 

 

Now, we will add all the minterms for which the output is true to find the desired canonical  

SOP (Sum of Product) expression. 

  F=X' Y+XY'+XY 

Converting Sum of Products (SOP) to shorthand notation 

The process of converting SOP form to shorthand notation is the same as the process of finding shorthand 

notation for minterms. There are the following steps to find the shorthand notation of the given SOP 

expression. 

 

o Write the given SOP expression. 

o Find the shorthand notation of all the minterms. 

o Replace the minterms with their shorthand notations in the given expression. 

 



 

Example: F = X'Y+XY'+XY 
 

1. Firstly, we write the SOP expression: 

 

 F = X'Y+XY'+XY  

 

2. Now, we find the shorthand notations of the minterms X'Y, XY', and XY. 

 

X'Y = (01)2 = m1  

XY' = (10)2 = m2  

XY = (11)2 = m3 

3. In the end, we replace all the minterms with their shorthand notations: 

 

    F=m1+m2+m3 

Converting shorthand notation to SOP expression 

The process of converting shorthand notation to SOP is the reverse process of converting SOP 

expression to shorthand notation. Let's see an example to understand this conversion. 

 

Example: 
Let us assume that we have a boolean function F, which defined on two variables X and Y. The minterms 

for the function F are expressed as shorthand notation is as follows: 

 

F=∑(1,2,3)  

 

Now, from this expression, we will find the SOP expression. The Boolean function F has two input 

variables X and y and the output of F=1 for m1, m2, and m3, i.e., 1st, 2nd, and 

3rd combinations. So, 

F=∑(1,2,3) 

F= m1 + m2 + m3 

 F= 01 + 10 + 11 

 

Now, we replace zeros with either X' or Y' and ones with either X or Y. Simply, the 

complement variable is used when the variable value is 1 otherwise the non-complement 

variable is used. 

F = ∑(1,2,3) 

F=01+10+11 

F= A'B + AB' + AB 

 

 

 

 



 

Karnaugh Map(K-Map) method 

Karnaugh introduced a method for simplification of Boolean functions in an easy way. This method 

is known as Karnaugh map method or K-map method. It is a graphical method, which consists of 2n cells for 

‘n’ variables. The adjacent cells are differed only in single bit position. 
 

K-Maps for 2 to 5 Variables 
 

K-Map method is most suitable for minimizing Boolean functions of 2 variables to 5 variables. Now, 

let us discuss about the K-Maps for 2 to 5 variables one by one. 

 

 

2 Variable K-Map 

The number of cells in 2 variable K-map is four, since the number of variables is two. 

The following figure shows 2 variable K-Map. 

 

• There is only one possibility of grouping 4 adjacent min terms. 

• The possible combinations of grouping 2 adjacent min terms are {(m0, m1), (m2, m3), (m0, m2) and 

(m1, m3)}. 

 

3 Variable K-Map 
 

The number of cells in 3 variable K-map is eight, since the number of variables is three. The 

following figure shows 3 variable K-Map. 

 

• There is only one possibility of grouping 8 adjacent min terms. 

• The possible combinations of grouping 4 adjacent min terms are {(m0, m1, m3, m2), (m4, m5, m7, m6), 

(m0, m1, m4, m5), (m1, m3, m5, m7), (m3, m2, m7, m6) and (m2, m0, m6, m4)}. 

• The possible combinations of grouping 2 adjacent min terms are {(m0, m1), (m1, m3), (m3, m2), (m2, 

m0), (m4, m5), (m5, m7), (m7, m6), (m6, m4), (m0, m4), (m1, m5), (m3, m7) and (m2, m6)}. 

• If x=0, then 3 variable K-map becomes 2 variable K-map. 

 

 

 



4 Variable K-Map 

The number of cells in 4 variable K-map is sixteen, since the number of variables is four. The 

following figure shows 4 variable K-Map. 

 

 
• There is only one possibility of grouping 16 adjacent min terms. 

• Let R1, R2, R3 and R4 represents the min terms of first row, second row, third row and fourth row 

respectively. Similarly, C1, C2, C3 and C4 represents the min terms of first column, second column, 

third column and fourth column respectively. The possible combinations of grouping 8 adjacent min 

terms are {(R1, R2), (R2, R3), (R3, R4), (R4, R1), (C1, C2), (C2, C3), (C3, C4), (C4, C1)}. 

• If w=0, then 4 variable K-map becomes 3 variable K-map. 

 

 

5 Variable K-Map 
 

The number of cells in 5 variable K-map is thirty-two, since the number of variables is 5. The 

following figure shows 5 variable K-Map. 
 

• There is only one possibility of grouping 32 adjacent min terms. 

• There are two possibilities of grouping 16 adjacent min terms. i.e., grouping of min terms from m0 

to m15 and m16 to m31. 

• If v=0, then 5 variable K-map becomes 4 variable K-map. 

In the above all K-maps, we used exclusively the min terms notation. Similarly, you can use exclusively the 

Max terms notation. 

 

 

 

 



Minimization of Boolean Functions using K-Maps 

If we consider the combination of inputs for which the Boolean function is ‘1’, then we will get the 

Boolean function, which is in standard sum of products form after simplifying the K-map. 

Similarly, if we consider the combination of inputs for which the Boolean function is ‘0’, then we will get 

the Boolean function, which is in standard product of sums form after simplifying the K-map. 

Follow these rules for simplifying K-maps in order to get standard sum of products form. 

• Select the respective K-map based on the number of variables present in the Boolean function. 

• If the Boolean function is given as sum of min terms form, then place the ones at respective min term 

cells in the K-map. If the Boolean function is given as sum of products form, then place the ones in 

all possible cells of K-map for which the given product terms are valid. 

• Check for the possibilities of grouping maximum number of adjacent ones. It should be powers of 

two. Start from highest power of two and upto least power of two. Highest power is equal to the 

number of variables considered in K-map and least power is zero. 

• Each grouping will give either a literal or one product term. It is known as prime implicant. The 

prime implicant is said to be essential prime implicant, if atleast single ‘1’ is not covered with any 

other groupings but only that grouping covers. 

• Note down all the prime implicants and essential prime implicants. The simplified Boolean function 

contains all essential prime implicants and only the required prime implicants. 

Note 1 − If outputs are not defined for some combination of inputs, then those output values will be 

represented with don’t care symbol ‘x’. That means, we can consider them as either ‘0’ or ‘1’. 

Note 2 − If don’t care terms also present, then place don’t cares ‘x’ in the respective cells of K-map. Consider 

only the don’t cares ‘x’ that are helpful for grouping maximum number of adjacent ones. In those cases, treat 

the don’t care value as ‘1’. 

Eg 
Let us simplify the following Boolean function, f(W, X, Y, Z)= WX’Y’ + WY + W’YZ’ using K-map. 

The given Boolean function is in sum of products form. It is having 4 variables W, X, Y & 

Z. So, we require 4 variable K-map. The 4 variable K-map with ones corresponding to the given product 

terms is shown in the following figure. 

        

Here, 1s are placed in the following cells of K-map. 

• The cells, which are common to the intersection of Row 4 and columns 1 & 2 are corresponding 

to the product term, WX’Y’. 

• The cells, which are common to the intersection of Rows 3 & 4 and columns 3 & 4 are 

corresponding to the product term, WY. 

• The cells, which are common to the intersection of Rows 1 & 2 and column 4 are corresponding 

to the product term, W’YZ’. 



 

There are no possibilities of grouping either 16 adjacent ones or 8 adjacent ones. There are three possibilities 

of grouping 4 adjacent ones. After these three groupings, there is no single one left as ungrouped. So, we no 

need to check for grouping of 2 adjacent ones. The 4 variable K-map with these three groupings is shown 

in the following figure. 

Here, we got three prime implicants WX’, WY & YZ’. All these prime implicants are essential 

because of following reasons. 

• Two ones (m8 & m9) of fourth row grouping are not covered by any other groupings. Only fourth 

row grouping covers those two ones. 

• Single one (m15) of square shape grouping is not covered by any other groupings. Only the 

square shape grouping covers that one. 

• Two ones (m2 & m6) of fourth column grouping are not covered by any other groupings. Only 

fourth column grouping covers those two ones. 

Therefore, the simplified Boolean function is 

f = WX’ + WY + YZ’ 

Follow these rules for simplifying K-maps in order to get standard product of sums form. 

• Select the respective K-map based on the number of variables present in the Boolean function. 

• If the Boolean function is given as product of Max terms form, then place the zeroes at respective 

Max term cells in the K-map. If the Boolean function is given as product of sums form, then 

place the zeroes in all possible cells of K-map for which the given sum terms are valid. 

• Check for the possibilities of grouping maximum number of adjacent zeroes. It should be powers of 

two. Start from highest power of two and upto least power of two. Highest power is equal to the 

number of variables considered in K-map and least power is zero. 

• Each grouping will give either a literal or one sum term. It is known as prime implicant. The prime 

implicant is said to be essential prime implicant, if atleast single ‘0’ is not covered with any other 

groupings but only that grouping covers. 

• Note down all the prime implicants and essential prime implicants. The simplified Boolean function 

contains all essential prime implicants and only the required prime implicants. 

Note − If don’t care terms also present, then place don’t cares ‘x’ in the respective cells of K-map. Consider 

only the don’t cares ‘x’ that are helpful for grouping maximum number of adjacent zeroes. In those cases, 

treat the don’t care value as ‘0’. 
 

 

 

 



Pair, Quad and Octet 
 

Pair Reduction Rule : Remove the variable which changes its state from complemented to 

uncomplemented or vice versa.Pair removes one variable only. 

 

 

Quad Reduction Rule : Remove the two variables which change their states.A quad removes two 

variables. 

 

 

Octet Reduction Rule : Remove the three variables which changes their state.Octet removes three 

variables. 

 
 

Map Rolling : Map rolling means roll the map considering the map as if its left edges are touching the 

right edges and top edges are touching bottom edges.While marking the pairs quads and octet, map must 

be rolled. 
 

 

Overlapping Groups : Overlapping means same 1 can be encircled more than once. Overlapping 

always leads to simpler expressions. 



 

 

Redundant Group : It is a group whose all 1's are overlapped by other groups. Redundant groups must 

be removed. Removal of redundant group leads to much simpler expression. 

 

 

 

Eg : Represent the following boolean expression in a K-map and simplify. 
 

F = x'yz + x'yz' + xy'z' + xy'z 

 

Solution : 

The K-map is as follows : 

 
 

Hence the simplified expression is F = x'y + xy' 

Ex. 2 :Simplify the following boolean expression using K-map. 
 

F = a'bc + ab'c' + abc + abc' 

 

Solution : 
 

The K-map is as follows : 

 

 

Hence the simplified expression is  F = bc + ac' 



Don’t Care Condition 
 

The “Don’t Care” conditions allow us to replace the empty cell of a K-Map to form a grouping of 

the variables. While forming groups of cells, we can consider a “Don’t Care” cell as either 1 or 0 or we can 

simply ignore that cell. Therefore, “Don’t Care” condition can help us to form a larger group of cells. 

A Don’t Care cell can be represented by a cross(X) in K-Maps representing a invalid combination. 

For example, in Excess-3 code system, the states 0000, 0001, 0010, 1101, 1110 and 1111 are invalid or 

unspecified. These are called don’t cares. Also, in design of 4-bit BCD- to-XS-3 code converter, the input 

combinations 1010, 1011, 1100, 1101, 1110, and 1111 are don’t cares. 

A standard SOP function having don’t cares can be converted into a POS expression by keeping don’t 

cares as they are, and writing the missing minterms of the SOP form as the maxterm of POS form. Similarly, 

a POS function having don’t cares can be converted to SOP form keeping the don’t cares as they are and write 

the missing maxterms of the POS expression as the minterms of SOP expression. 

Eg 
Minimise the following function in SOP minimal form using K-Maps: 

  f = m(1, 5, 6, 12, 13, 14) + d(4) 

Explanation 
The SOP K-map for the given expression is: 

 

 

Therefore, SOP minimal is, 

Eg 
Minimise the following function in SOP minimal form using K-Maps: 

 

Explanation: 
Writing the given expression in POS form: 

 

The POS K-map for the given expression is: 

 

Therefore, POS minimal is, 

 
 

 

F(A, B, C, D) = m(0, 1, 2, 3, 4, 5) + d(10, 11, 12, 13, 14, 15) 

F(A, B, C, D) = M(6, 7, 8, 9) + d(10, 11, 12, 13, 14, 15) 

F = A'(B' + C') 

f = BC' + BD' + A'C'D 

https://www.geeksforgeeks.org/k-mapkarnaugh-map/


Eg 
Minimise the following function in SOP minimal form using K-Maps: F(A, B, C, D) = m(1, 2, 6, 7, 8, 13, 14, 

15) + d(3, 5, 12) 

Explanation: 
The SOP K-map for the given expression is: 

Therefore, 

  f = AC'D' + A'D + A'C + AB  

 

Product of Sum Method(POS) 

A canonical product of sum is a boolean expression that entirely consists of maxterms. The Boolean 

function F is defined on two variables X and Y. The X and Y are the inputs of the boolean function F whose 

output is true when only one of the inputs is set to true. The truth table for Boolean expression F is as 

follows: 

 

Inputs Output 

X Y F 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 

In our minterm and maxterm section, we learned about how we can form the maxterm from the variable's 

value. A column will be added for the maxterm in the above table. The complement of the variables is taken 

whose value is 0, and the variables whose value is 1 will remain the same. 

 

Inputs 
 

Output Minterm 

X Y F M 

0 0 0 X'+Y' 

0 1 1 X'+Y 

1 0 1 X+Y' 

1 1 1 X+Y 



 

Now, we will multiply all the minterms for which the output is false to find the desired canonical 

POS(Product of sum) expression. 

 
  F=(X'+Y').(X+Y) 

Converting Product of Sum (POS) to shorthand notation 

The process of converting POS form to shorthand notation is the same as the process of finding shorthand 

notation for maxterms. There are the following steps used to find the shorthand notation of the given POS 

expression. 

o Write the given POS expression. 

o Find the shorthand notation of all the maxterms. 

o Replace the minterms with their shorthand notations in the given expression. 
 

Eg 

F = (X'+Y').(X+Y) 

1. Firstly, we will write the POS expression: 

 

2. Now, we will find the shorthand notations of the maxterms X'+Y' and X+Y. 

3. In the end, we will replace all the minterms with their shorthand notations: 

 

Converting shorthand notation to POS expression 

The process of converting shorthand notation to POS is the reverse process of converting POS 

expression to shorthand notation. Let's see an example to understand this conversion. 

Eg 

Let us assume that we have a boolean function F, defined on two variables X and Y. The maxterms 

for the function F are expressed as shorthand notation is as follows: 

 

Now, from this expression, we find the POS expression. The Boolean function F has two input 

variables X and Y and the output of F=0 for M1, M2, and M3, i.e., 1st, 2nd, and 

3rd combinations. So, 

 

Next, we replace zeros with either X or Y and ones with either X' or Y'. Simply, if the value of the variable 

is 1, then we take the complement of that variable, and if the value of the variable is 0, then we take the 

variable "as is". 

 

F = (X'+Y').(X+Y) 

X'+Y' = (00)2 = M0 

X+Y = (11)2 = M3 

F=M0.M3 

F=∏(1,2,3) 

F=∏(1,2,3) 

F= M1.M2.M3 

F= 01.10.11 



F = ∑(1,2,3) 

 F=01.10.11 

F=(A+B').( A'+B).( A'+B') 

Product of Sum Simplification 

To find the simplified maxterm solution using K-map is the same as to find for the minterm solution. 

There are some minor changes in the maxterm solution, which are as follows: 

1. We will populate the K-map by entering the value of 0 to each sum-term into the K- map cell and 

fill the remaining cells with one's. 

2. We will make the groups of 'zeros' not for 'ones'. 

3. Now, we will define the boolean expressions for each group as sum-terms. 

4. At last, to find the simplified boolean expression in the POS form, we will combine the sum-terms 

of all individual groups. 

 

Let's take some example of 2-variable, 3-variable, 4-variable and 5-variable K-map examples 

Eg 
 

Y=(A'+B')+(A'+B)+(A+B) 

Simplified expression: A'B Eg 
Y=(A + B + C') + (A + B' + C') + (A' + B' + C) + (A' + B' + C') 

 

Simplified expression: Y=(A + C') .(A' + B') 
Eg 

F(A,B,C,D)=π(3,5,7,8,10,11,12,13) 

 
Simplified expression: Y=(A + C') .(A' + B') 



Combinational Circuits 

Karnaugh map: 

For each symbol of the Excess-3 code, we use 1’s to draw the map for simplifying Boolean function 

: 

 

Circuit implementation: 

             z = D’;   y = CD + C’D’ = CD + (C + D)’ 

 x = B’C + B’D + BC’D’ = B’(C + D) + B(C + D)’         w = A + BC + BD = A + B(C + D) 

 

 



Introduction to combinational circuits: 

❖ A combinational circuit consists of logic gates whose outputs at any time are determined from only the present 

combination of inputs.  

❖ A combinational circuit performs an operation that can be specified logically by a set of Boolean functions.  

 

 
 Sequential circuits:  

❖ Sequential circuits employ storage elements in addition to logic gates. Their outputs are a function of the 

inputs and the state of the storage elements.  

❖ Because the state of the storage elements is a function of previous inputs, the outputs of a sequential circuit 

depend not only on present values of inputs, but also on past inputs, and the circuit behavior must be 

specified by a time sequence of inputs and internal states.  

 

Analysis Procedure  

Explain the analysis procedure. Analyze the combinational circuit the following logic diagram. (May 2015) 

• The analysis of a combinational circuit requires that we determine the function that the circuit 

implements. 

• The analysis can be performed manually by finding the Boolean functions or truth table or by using a 

computer simulation program. 

• The first step in the analysis is to make that the given circuit is combinational or sequential. 

• Once the logic diagram is verified to be combinational, one can proceed to obtain the output Boolean 

functions or the truth table. 

To obtain the output Boolean functions from a logic diagram, proceed as follows:  

1. Label all gate outputs that are a function of input variables with arbitrary symbols. Determine the 

Boolean functions for each gate output.  

2. Label the gates that are a function of input variables and previously labeled gates with other arbitrary 

symbols. Find the Boolean functions for these gates.  

3. Repeat the process outlined in step 2 until the outputs of the circuit are obtained.  

4. By repeated substitution of previously defined functions, obtain the output Boolean functions in terms of 

input variables.  

Example:  

F2 = AB + AC + BC; T1 = A + B + C; T2 = ABC; T3 = F2’T1;  

F1 = T3 + T2 

F1 = T3 + T2 = F2’T1 + ABC = A’BC’ + A’B’C + AB’C’ + ABC 

 

 

 



 

The Boolean functions for the above outputs are, 

Derive truth table from logic diagram : 

◼ We can derive the truth table in Table 4-1 by using the circuit of Fig.4-2. 
 

 

Design procedure : 

❖ The design of combinational circuits starts from the specification of the design objective and 

culminates in a logic circuit diagram or a set of Boolean functions from which the logic diagram can 

be obtained. 

❖ The procedure involved involves the following steps, 

✓ From the specifications of the circuit, determine the required number of inputs and outputs and 

assign a symbol to each. 

✓ Derive the truth table that defines the required relationship between inputs and outputs. 

✓ Obtain the simplified Boolean functions for each output as a function of the input variables. 

✓ Draw the logic diagram and verify the correctness of the design. 
 



 Example : Design a combinational logic circuit with three inputs , the output is at logic 1 when more 

than one inputs are at logic 1. 

Solution: Assume A, B, C are inputs and Y is output . 

 

Truth table      K map Simplification 

        

          

Boolean Expression 

                Y=AC + BC + AB                                     

                                                        Logic Diagram 

      
Binary Adder-Subtractor: 

• HALF-ADDER: a combinational circuit that performs the addition of 
two bits is called a half adder. 

• Half-adder is used to add two bits. Therefore, half-adder has two 
inputs and two outputs, with SUM and CARRY. Figure shows the truth table of a half- adder. 
The Boolean expressions for SUM and CARRY are,  
   

 
SUM = AB’+A’B 
 CARRY = AB 

• These expressions shows`that, SUM output is EX-OR gate and the CARRY output is AND gate. 
Figure shows the be implementation of half-adder with all the combinations including the 
implementation using NAND gates only. 
 

Truth table  

 

Inputs Output 

A B C Y 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 

Inputs Outputs 

A B Carry Sum 

0 0 0 0 

0 1 0 1 

1 0 0 1 

1 1 1 0 

 



  

• FULL ADDER : one that performs the addition of three bits(two significant bits and a 

previous carry) is a full adder. 

S = z ⊕ (x ⊕ y) 

 

= z’(xy’ + x’y) + z(xy’ + x’y)’ 
 
= xy’z’ + x’yz’ + xyz + x’y’z 
 
C = z(xy’ + x’y) + xy = xy’z + x’yz + xy 

 
 

K-map simplifications 

 
   
 

 

 
 
  
 

 
 

 

 

 

 

 

 

Inputs Outputs 

A B Cin Cout Sum 

0 0 0 0 0 

0 0 1 0 1 

0 1 0 0 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 0 

1 1 1 1 1 

Truth table 



Carry Propagation :  

◼ The signal from Ci to the output carry Ci+1, propagates through an AND and OR gates, so, 
for an n-bit RCA, there are 2n gate levels for the carry to propagate from input to output. 

◼ Because the propagation delay will affect the output signals on different time, so the signals 
are given enough time to get the precise and stable outputs. 

 
The Full Adder can be implement using Two Half Adders and OR gates 

 
The expression for sum is 

 

 

The Expression for carry is 
 

 

 

Logic Diagram 

 

 

 

 

 

 

 



Truth table of Half adder 

Logic Diagram 

K-map for Difference and Borrow 

Subtractor 

Subtractor is the logic circuit which is used to subtract two binary number (digit) and provides 

Difference and Borrow as a output. In digital electronics we have two types of subtractor, Half 

Subtractor and Full Subtractor. 

Rules for two bit addition 

 

0 - 0 = 0 

0 - 1 = 1 with borrow 1 

1 - 0 = 1 

1 - 1 = 0 

Half Subtractor 

Half Subtractor is used for subtracting one single bit binary digit from another single bit binary 

digit.The truth table of Half Subtractor is shown below. 

 

 

Inputs Outputs 

A B Difference Borrow 

0 0 0 0 

0 1 1 1 

1 0 1 0 

1 1 0 0 

 

 

 

 

Full Subtractor 
A logic Circuit Which is used for Subtracting Three Single bit Binary digit is known as Full 

Subtractor.The inputs are A,B, Bin and the outputs are D and Bout. 

K-map for D and Bout      Logic Diagram 

 

 

  

   

 



Truth table 

 

 

 
We can further simplify the function of the Difference (D) 

 

Simplified Logic diagram 

 

 

Magnitude comparator: 

◼ The equality relation of each pair of bits can be expressed logically with an exclusive-
NOR function as: 

A = A3A2A1A0 ; B = B3B2B1B0 

xi=AiBi+Ai’Bi’  for i = 0, 1, 2, 3  
(A = B) = x3x2x1x0 

 
Magnitude Comparator Definition 

 A magnitude comparator is a combinational circuit that compares two numbers A & B to 
determine whether: 

 A > B, or A = B, or A < B 

Inputs Outputs 

A B Bin D Bout 

0 0 0 0 0 
0 0 1 1 1 

0 1 0 1 1 

0 1 1 0 1 
1 0 0 1 0 

1 0 1 0 0 

1 1 0 0 0 
1 1 1 1 1 



◼  We inspect the relative magnitudes of pairs of MSB. If equal, we compare the next lower 
significant pair of digits until a pair of unequal digits is reached. 

◼ If the corresponding digit of A is 1 and that of B is 0, we conclude that A>B. 

◼  (A>B)= 

A3B’3+x3A2B’2+x3x2A1

B’1+x3x2x1A0B’0 (A<B)= 

A’3B3+x3A’2B2+x3x2A’1B1+x3x

2x1A’0B0 

Decoder 
• Decoder is a combinational circuit. It has N inputs and 2N outputs. 

• The decoder is called n-to-m-line decoder, where m≤2n . 
• the decoder is also used in conjunction with other code converters such as a BCD-to-

seven_segment decoder. 

• 3-to-8 line decoder: For each possible input combination, there are seven outputs 
that are equal to 0 and only one that is equal to 1. 

 



2 to 4 Decoder 

It has 2 inputs and 22 = 4 outputs. 

 

Circuit Diagram 

Truth Table 

 

Logic Diagram 

 

 

2 to 4 Decoder with Enable input 

 

 



Truth Table 

 

 
Logic Diagram 

 

 
3 to 8 Decoder 

It has 3 inputs and 23 = 8 outputs. 

 

 



 

 
 

Logic Diagram 

 

 

 

  

 



Encoders 

Encoders is a combinational circuit which takes 2N inputs and gives out N outputs, the enable pin should 

be kept 1 for enabling the circuit. 

4 to 2 Encoder 

It has 22 inputs and 2 outputs. 

 

 

Truth Table 

 

 
 

 

 
 

 

 

 

 



Priority Encoders 

A Priority Encoder works opposite of the decoder circuit. If more than one input is active, the higher 
order input has priority. 

 

4 to 2 Priority Encoders 

D0-D3 - inputs A1,A0 – outputs 

Active (A)– Valid indicator. It indicates the output is valid or not Output is invalid 

when no inputs are active .i.e, A=0 

Output is valid when at least one input is active .i,e, A=1 
 

Truth Table 

 

 
K-map simplification 



 

Logic Diagram 

 

3 to 8 Priority Encoder 
 

 

 

 

Multiplexer (Mux) 
• Multiplexer is a combinational circuit that selects binary information from one of many inputs 

and directs it into single output. 

• The selection of particular input is controlled by a set of selection line Mutliplexer has 2n inputs, 
n select line (control input) and one output 

• It also called as Data selector. 
 

2 to 1 Multiplexer 

has 21 inputs, 1 select line and one output 

 

 

 



Circuit diagram 

 
4 to 1 MUX 

4 to 1 MUX has 22 = 4 inputs, 2 select line and one output 

                                              

 

8 to1 MUX 

8 to1 MUX has 23 = 8 inputs, 3 select line and one output 

 



 

MUX as universal combinational modules 

• Each minterm of the function can be mapped to a data input of the multiplexer. 
• For each row in the truth table, where the output is 1, set the corresponding data input of the mux to 1. 

• Set the remaining inputs of the mux to 0. 
 

Example 1: Implement the following Boolean function using 4:1 MUX F(x,y,z) = Σm(1, 2, 6, 7) 

Truth Table 

 
Multiplexer Implementation 

 

 

 

 



 Example 2: Implement the following Boolean function using 8:1 MUX 

F(A,B,C,D) = Σm(1, 3, 4, 11,12-15) 

 

 

Demultiplexer (DEMUX) 

Demultiplexer has 2n outputs , n select lines, one input. A 

demultiplexer is also called a data distributor. 

1- to-2 demultiplexer 

has 22 outputs , 2 select lines, one input. 
         Truth Table 

 

Logic diagram 

 

http://www.electronicshub.org/wp-content/uploads/2015/07/1-to-2-demux.jpg
http://www.electronicshub.org/wp-content/uploads/2015/07/1-to-2-demux-truth-table.jpg


1-to-4 Demultiplexer 
It has one input,2 select lines,4 outputs 

    Truth Table 

 

Logic Diagram 

 

1-to-8 Demultiplexer 
Has one input 3-select lines 8-outputs   

 

http://www.electronicshub.org/wp-content/uploads/2015/07/1-to-4-Demux.jpg
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Truth Table          

    

 

Logic Diagram 
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1-to-8 DEMUX using Two 1-to- 4 Demultiplexers 

1-to-8 demultiplexer can be implemented by using two 1-to-4 demultiplexers with a proper 

cascading. 

 
Applications of Demultiplexer 

• Synchronous data transmission systems 
• Boolean function implementation (as we discussed full subtractor function above) 
• Data acquisition systems 
• Combinational circuit design 
• Automatic test equipment systems 
• Security monitoring systems (for selecting a particular surveillance camera at a time), etc. 

 
 

 

In the figure, the highest significant bit A of 

the selection inputs are connected to the 

enable inputs such that it is complemented 

before connecting to one DEMUX and to 

the other it is directly connected. By this 

configuration, when A is set to zero, one of 

the output lines from Y0 to Y3 is selected 

based on the combination of select lines B 

and C. Similarly, when A is set to one, based 

on the select lines one of the output lines 

from Y4 to Y7 will be selected. 
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