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DEADLOCKS 

 

A process requests resources, if the resources are not available at that time, the process enters a 

waiting state. Sometimes, a waiting process is never again able to change state, because the 

resources it has requested are held by other waiting processes. This situation is called a 

Deadlock. 

 

System Model 

 A system consists of a finite number of resources to be distributed among a number of 

competing processes. The resources are partitioned into several types, each consisting of 

some number of identical instances. Memory space, CPU cycles, files, and I/0 devices are 

examples of resource types. 

 A process must request a resource before using it and must release the resource after 

using it. A process may request as many resources as it requires carrying out its 

designated task. The number of resources requested may not exceed the total number of 

resources available in the system. 

Under the normal mode of operation, a process may utilize a resource in only the  following 

sequence:- 

1. Request: The process requests the resource. If the request cannot be granted 

immediately, then the requesting process must wait until it can acquire the resource. 

2. Use: The process can operate on the resource. 

3. Release: The process releases the resource. 

 

A set of processes is in a deadlocked state when every process in the set is waiting for an event 

that can be caused only by another process in the set. The events with which we are mainly 

concerned here are resource acquisition and release. The resources may be either physical 

resources or logical resources. 

 

To illustrate a deadlocked state, consider a system with three CD RW drives. 

Suppose each of three processes holds one of these CD RW drives. If each process now requests 
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another drive, the three processes will be in a deadlocked state. 

Each is waiting for the event "CD RW is released," which can be caused only by one of the other 

waiting processes. This example illustrates a deadlock involving the same resource type. 

Deadlocks may also involve different resource types. For example, consider a system with one 

printer and one DVD drive. Suppose that process Pi is holding the DVD and process Pj is 

holding the printer. If Pi requests the printer and Pj requests the DVD drive, a deadlock occurs. 

 

Deadlock Characterization 

Necessary Conditions 

A deadlock situation can arise if the following four conditions hold simultaneously in a system: 

1. Mutual exclusion: At least one resource must be held in a non-sharable mode, that is, 

only one process at a time can use the resource. If another process requests that resource, 

the requesting process must be delayed until the resource has been released. 

2. Hold and wait: A process must be holding at least one resource and waiting to acquire 

additional resources that are currently being held by other processes. 

3. No preemption: Resources cannot be preempted; that is, a resource can be released only 

voluntarily by the process holding it, after that process has completed its task. 

4. Circular wait: A set {P0, Pl, ... , Pn} of waiting processes must exist such that Po is 

waiting for a resource held by P1, P1 is waiting for a resource held by P2, ... , Pn-1 is 

waiting for a resource held by Pn and Pn is waiting for a resource held by Po. 

 

Resource-Allocation Graph  

Deadlocks can be described in terms of a directed graph called System Resource-Allocation 

Graph. 

The graph consists of a set of vertices V and a set of edges E. The set of vertices V  is 

partitioned into two different types of nodes: 

 P = {P1, P2, ...,Pn}, the set consisting of all the active processes in the system. 

 R = {R1, R2, ..., Rm} the set consisting of all resource types in the system. 

A directed edge from process Pi to resource type Rj is denoted by Pi → Rj it signifies that 

process Pi has requested an instance of resource type Rj and is currently waiting for that 



Operating Systems 22AI303 

 

4 Dept. of CSE (AIML), MCE, Hassan 
 

resource. 

A directed edge from resource type Rj to process Pi is denoted by Rj → Pi it signifies that an 

instance of resource type Rj has been allocated to process Pi. 

 A directed edge Pi → Rj is called a Request Edge. 

 A directed edge Rj → Pi is called an Assignment Edge. 

Pictorially each process Pi as a circle and each resource type Rj as a rectangle. Since resource 

type Rj may have more than one instance, each instance is represented as a dot within the 

rectangle. 

A request edge points to only the rectangle Rj, whereas an assignment edge must also designate 

one of the dots in the rectangle. 

When process Pi requests an instance of resource type Rj, a request edge is inserted in the 

resource-allocation graph. When this request can be fulfilled, the request edge is instantaneously 

transformed to an assignment edge. When the process no longer needs access to the resource, it 

releases the resource; as a result, the assignment edge is deleted. 

 

The resource-allocation graph shown in Figure depicts the following situation. 

 

The sets P, K and E: 

 P = {P1, P2, P3} 

 R= {R1, R2, R3, R4} 

 E = {Pl →Rl, P2 → R3, Rl → P2, R2 → P2, R2 → P1, R3 → P3 } 

Resource instances: 

 One instance of resource type R1 
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 Two instances of resource type R2 

 One instance of resource type R3 

 Three instances of resource type R4 

Process states: 

 Process P1 is holding an instance of resource type R2 and is waiting for an instance of 

resource type R1. 

 Process P2 is holding an instance of R1 and an instance of R2 and is waiting for an 

instance of R3. 

 Process P3 is holding an instance of R3. 

 

If the graph does contain a cycle, then a deadlock may exist. 

 If each resource type has exactly one instance, then a cycle implies that a deadlock has 

occurred. If the cycle involves only a set of resource types, each of which has only a 

single instance, then a deadlock has occurred. Each process involved in the cycle is 

deadlocked. 

 If each resource type has several instances, then a cycle does not necessarily imply that 

a deadlock has occurred. In this case, a cycle in the graph is a necessary but not a 

sufficient condition for the existence of deadlock. 

 

To illustrate this concept, the resource-allocation graph depicted in below figure:  

Suppose that process P3 requests an instance of resource type R2. Since no resource instance  is 

currently available, a request edge P3 → R2 is added to the graph. At this point, two 

minimal cycles exist in the system: 

1. P1 →R1 → P2 → R3 → P3 → R2→P1 

2. P2 →R3 → P3 → R2 → P2 

 

Processes P1, P2, and P3 are deadlocked. Process P2 is waiting for the resource R3, which is 

held by process P3. Process P3 is waiting for either process P1 or process P2 to release 

resourceR2. In addition, process P1 is waiting for process P2 to release resource R1. 

 



Operating Systems 22AI303 

 

6 Dept. of CSE (AIML), MCE, Hassan 
 

 

Resource-allocation graph with a deadlock. 

 

Consider the resource-allocation graph in below Figure. In this example also have a cycle: 

P1→R1→P3→R2→P1 

Resource-allocation graph with a cycle but no deadlock  

 

However, there is no deadlock. Observe that process P4 may release its instance of resource type 

R2. That resource can then be allocated to P3, breaking the cycle. 

 

Methods for Handling Deadlocks 

The deadlock problem can be handled in one of three ways: 

1. Use a protocol to prevent or avoid deadlocks, ensuring that the system will never enter a 

deadlocked state. 

2. Allow the system to enter a deadlocked state, detect it, and recover. 

3. Ignore the problem altogether and pretend that deadlocks never occur in the system. 

To ensure that deadlocks never occur, the system can use either deadlock prevention or 

a deadlock-avoidance scheme. 

Deadlock prevention provides a set of methods for ensuring that at least one of the necessary 

conditions cannot hold. These methods prevent deadlocks by constraining how requests for 
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resources can be made. 

Deadlock-avoidance requires that the operating system be given in advance additional 

information concerning which resources a process will request and use during its lifetime. With 

this additional knowledge, it can decide for each request whether or not the process should wait. 

To decide whether the current request can be satisfied or must be delayed, the system must 

consider the resources currently available, the resources currently allocated to each process, and 

the future requests and releases of each process. 

If a system does not employ either a deadlock-prevention or a deadlock avoidance algorithm, 

then a deadlock situation may arise. In this environment, the system can provide an algorithm 

that examines the state of the system to determine whether a deadlock has occurred and an 

algorithm to recover from the deadlock. 

In the absence of algorithms to detect and recover from deadlocks, then the system is in a 

deadlock state yet has no way of recognizing what has happened. In this case, the undetected 

deadlock will result in deterioration of the system's performance, because resources are being 

held by processes that cannot run and because more and more processes, as they make requests 

for resources, will enter a deadlocked state. Eventually, the system will stop functioning and will 

need to be restarted manually. 

 

Deadlock Prevention 

Deadlock can be prevented by ensuring that at least one of the four necessary conditions cannot 

hold. 

1) Mutual Exclusion 

 The mutual-exclusion condition must hold for non-sharable resources. Sharable 

resources, do not require mutually exclusive access and thus cannot be involved in a 

deadlock. 

 Ex: Read-only files are example of a sharable resource. If several processes attempt to 

open a read-only file at the same time, they can be granted simultaneous access to the 

file. A process never needs to wait for a sharable resource. 

 Deadlocks cannot prevent by denying the mutual-exclusion condition, because some 

resources are intrinsically non-sharable. 
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2) Hold and Wait 

To ensure that the hold-and-wait condition never occurs in the system, then guarantee that, 

whenever a process requests a resource, it does not hold any other resources. 

 One protocol that can be used requires each process to request and be allocated all its 

resources before it begins execution. 

 Another protocol allows a process to request resources only when it has none. A process 

may request some resources and use them. Before it can request any additional resources, 

it must release all the resources that it is currently allocated. 

Ex: 

 Consider a process that copies data from a DVD drive to a file on disk, sorts the file, and 

then prints the results to a printer. If all resources must be requested at the beginning of 

the process, then the process must initially request the DVD drive, disk file, and printer. 

It will hold the printer for its entire execution, even though it needs the printer only at the 

end. 

 The second method allows the process to request initially only the DVD drive and disk 

file. It copies from the DVD drive to the disk and then releases both the DVD drive and 

the disk file. The process must then again request the disk file and the printer. After 

copying the disk file to the printer, it releases these two resources and terminates. 

 

The two main disadvantages of these protocols: 

1. Resource utilization may be low, since resources may be allocated but unused for a long 

period. 

2. Starvation is possible. 

 

3) No Preemption 

The third necessary condition for deadlocks is that there be no preemption of resources that have 

already been allocated. 

To ensure that this condition does not hold, the following protocols can be used: 

 If a process is holding some resources and requests another resource that cannot be 

immediately allocated to it, then all resources the process is currently holding are 
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preempted. 

 The preempted resources are added to the list of resources for which the process is 

waiting. The process will be restarted only when it can regain its old resources, as well as 

the new ones that it is requesting. 

If a process requests some resources, first check whether they are available. If they are, allocate 

them. 

If they are not available, check whether they are allocated to some other process that is waiting 

for additional resources. If so, preempt the desired resources from the waiting process and 

allocate them to the requesting process. 

If the resources are neither available nor held by a waiting process, the requesting process 

must wait. While it is waiting, some of its resources may be preempted, but only if another 

process requests them. 

A process can be restarted only when it is allocated the new resources it is requesting and 

recovers any resources that were preempted while it was waiting. 

 

4) Circular Wait 

One way to ensure that this condition never holds is to impose a total ordering of all resource 

types and to require that each process requests resources in an increasing order of enumeration. 

To illustrate, let R = {R1, R2, ... , Rm} be the set of resource types. Assign a unique integer 

number to each resource type, which allows to compare two resources and to determine whether 

one precedes another in ordering. Formally, it defined as a one-to-one function 

F: R ->N, where N is the set of natural numbers. 

Example: if the set of resource types R includes tape drives, disk drives, and printers, then the 

function F might be defined as follows: 

F (tape drive) = 1 

 F(disk drive) = 5 

F(printer) = 12 

Now consider the following protocol to prevent deadlocks. Each process can request resources 

only in an increasing order of enumeration. That is, a process can initially request any number of 

instances of a resource type -Ri. After that, the process can request instances of resource type Rj 

if and only if F(Rj) > F(Ri). 
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DEADLOCK AVOIDANCE 

 To avoid deadlocks additional information is required about how resources are to be 

requested. With the knowledge of the complete sequence of requests and releases for 

each process, the system can decide for each request whether or not the process should 

wait in order to avoid a possible future deadlock 

 Each request requires that in making this decision the system consider the resources 

currently available, the resources currently allocated to each process, and the future 

requests and releases of each process. 

 The various algorithms that use this approach differ in the amount and type of 

information required. The simplest model requires that each process declare the 

maximum number of resources of each type that it may need. Given this a priori 

information, it is possible to construct an algorithm that ensures that the system will 

never enter a deadlocked state. Such an algorithm defines the deadlock-avoidance 

approach. 

 

1) Safe State 

 Safe state: A state is safe if the system can allocate resources to each process (up to its 

maximum) in some order and still avoid a deadlock. A system is in a safe state only if 

there exists a safe sequence. 

 Safe sequence: A sequence of processes <P1, P2, ... , Pn> is a safe sequence for the 

current allocation state if, for each Pi, the resource requests that Pi can still make can be 

satisfied by the currently available resources plus the resources held by all Pj, with  j <i. 

 

In this situation, if the resources that Pi needs are not immediately available, then Pi can wait 

until all Pj have finished. When they have finished, Pi can obtain all of its needed resources, 

complete its designated task, return its allocated resources, and terminate. When Pi terminates, 

Pi+1 can obtain its needed resources, and so on. If no such sequence exists, then the system state 

is said to be unsafe. 

A safe state is not a deadlocked state. Conversely, a deadlocked state is an unsafe state. Not all 

unsafe states are deadlocks as shown in figure. An unsafe state may lead to a deadlock. As  long 

as the state is safe, the operating system can avoid unsafe states. 
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Safe, unsafe, and deadlocked state spaces. 

 

2) Resource-Allocation-Graph Algorithm 

 If a resource-allocation system has only one instance of each resource type, then a 

variant of the resource-allocation graph is used for deadlock avoidance. 

 In addition to the request and assignment edges, a new type of edge is introduced, called 

a claim edge. 

 A claim edge Pi ->Rj indicates that process Pi may request resource Rj at some time in 

the future. This edge resembles a request edge in direction but is represented in the 

graph by a dashed line. 

 When process Pi requests resource Rj, the claim edge Pi ->Rj is converted to a 

request edge. When a resource Rj is released by Pi the assignment edge Rj->Pi is 

reconverted to a claim edge Pi->Rj. 

 

Resource-allocation graph for deadlock avoidance. 

Note that the resources must be claimed a priori in the system. That is, before process Pi 

starts executing, all its claim edges must already appear in the resource-allocation graph. 

We can relax this condition by allowing a claim edge Pi ->Rj to be added to the graph only if all   
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the edges associated with process Pi are claim edges. 

Now suppose that process Pi requests resource Rj. The request can be granted only if converting 

the request edge Pi ->Rj to an assignment edge Rj->Pi does not result in the formation of a cycle 

in the resource-allocation graph. 

There is need to check for safety by using a cycle-detection algorithm. An algorithm for 

detecting a cycle in this graph requires an order of n2 operations, where n is the number of 

processes in the system. 

 If no cycle exists, then the allocation of the resource will leave the system in a safe state. 

 If a cycle is found, then the allocation will put the system in an unsafe state. In that case, 

process Pi will have to wait for its requests to be satisfied. 

 

To illustrate this algorithm, consider the resource-allocation graph as shown above. Suppose that 

P2 requests R2. Although R2 is currently free, we cannot allocate it to P2, since this action will 

create a cycle in the graph. 

A cycle, indicates that the system is in an unsafe state. If P1 requests R2, and P2 requests R1, 

then a deadlock will occur. 

 

An unsafe state in a resource-allocation graph 

 

3) Banker's Algorithm 

The Banker’s algorithm is applicable to a resource allocation system with multiple instances of 

each resource type. 

 When a new process enters the system, it must declare the maximum number of instances 
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of each resource type that it may need. This number may not exceed the total number of 

resources in the system. 

 When a user requests a set of resources, the system must determine whether the allocation 

of these resources will leave the system in a safe state. If it will, the resources are 

allocated; otherwise, the process must wait until some other process releases enough 

resources. 

To implement the banker's algorithm the following data structures are used. 

 Let n = number of processes, and m = number of resources types 

Available: A vector of length m indicates the number of available resources of each type. If 

available [j] = k, there are k instances of resource type Rj available. 
 

Max: An n x m matrix defines the maximum demand of each process. If Max [i, j] = k, then 

process Pi may request at most k instances of resource type Rj. 
 

Allocation: An n x m matrix defines the number of resources of each type currently allocated to 

each process. If Allocation [i, j] = k then Pi is currently allocated k instances of Rj. 
 

Need: An n x m matrix indicates the remaining resource need of each process. If Need [i,j] = 

k,then Pi may need k more instances of Rj to complete its task. 

Need [i, j] = Max[i, j] – Allocation [i, j] 

 

Safety Algorithm 

The algorithm for finding out whether or not a system is in a safe state. This algorithm can be 

described as follows: 

1. Let Work and Finish be vectors of length m and n, respectively. Initialize: 

Work = Available 

Finish [i] = false for i = 0, 1,…,n- 1 

2. Find an index i such that both: 

Finish[i] == false 

Needi  Work 

If no such i exists, go to step 4 

3. Work = Work + Allocationi 
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Finish[i] = true 

go to step 2 

4. If Finish [i] == true for all i, then the system is in a safe state 

This algorithm may require an order of m x n2 operations to determine whether a state is safe. 

 

Resource-Request Algorithm 

The algorithm for determining whether requests can be safely granted. 

Let Requesti be the request vector for process Pi. If Requesti [j] == k, then process Pi wants k 

instances of resource type Rj. When a request for resources is made by process Pi, the following 

actions are taken: 

1. If Requesti  Needi go to step 2. Otherwise, raise error condition, since process has 

exceeded its maximum claim. 

2. If Requesti  Available, go to step 3. Otherwise Pi must wait, since resources are not 

available 

3. Have the system pretend to allocate requested resources to Pi by modifying the state 

as follows: 

Available = Available – Request;  

Allocationi = Allocationi + Requesti;   

Needi = Needi – Requesti; 

If  safe  the resources are allocated to Pi 

If  unsafe  Pi must wait, and the old resource-allocation state is restored 

 

Example 

Consider a system with five processes Po through P4 and three resource types A, B, and C. 

Resource type A has ten instances, resource type B has five instances, and resource type C has 

seven instances. Suppose that, at time T0the following snapshot of the system has been taken: 
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The content of the matrix Need is defined to be Max – Allocation 

 

The system is currently in a safe state. Indeed, the sequence <P1, P3, P4, P2, P0> satisfies the 

safety criteria. 

Suppose now that process P1 requests one additional instance of resource type A and two 

instances of resource type C, so Request1 = (1,0,2). Decide whether this request can be 

immediately granted. 

Check that Request   Available  

(1,0,2)   (3,3,2)  true 

Then pretend that this request has been fulfilled, and the following new state is arrived. 
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Executing safety algorithm shows that sequence <P1, P3, P4, P0, P2> satisfies safety 

requirement. 

 

DEADLOCK DETECTION 

If a system does not employ either a deadlock-prevention or a deadlock avoidance  algorithm, 

then a deadlock situation may occur. In this environment, the system may provide: 

 An algorithm that examines the state of the system to determine whether a deadlock 

has occurred. 

 An algorithm to recover from the deadlock. 

 

Single Instance of Each Resource Type 

If all resources have only a single instance, then define a deadlock detection algorithm that uses a 

variant of the resource-allocation graph, called a wait-for graph. 

 This graph is obtained from the resource-allocation graph by removing the resource 

nodes and collapsing the appropriate edges. 

 An edge from Pi to Pj in a wait-for graph implies that process Pi is waiting for process 

Pjto release a resource that Pi needs. An edge Pi → Pj exists in a wait-for graph if and 

only if the corresponding resource allocation graph contains two edges Pi → Rq and Rq 

→ Pi for some resource Rq. 

Example: In below Figure, a resource-allocation graph and the corresponding wait-for graph 

is presented. 
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(a) Resource-allocation graph. (b) Corresponding wait-for graph. 

 

 A deadlock exists in the system if and only if the wait-for graph contains a cycle. To 

detect deadlocks, the system needs to maintain the wait-for graph and periodically invoke 

an algorithm that searches for a cycle in the graph. 

 An algorithm to detect a cycle in a graph requires an order of n2 operations, where n is 

the number of vertices in the graph. 

 

Several Instances of a Resource Type 

A deadlock detection algorithm that is applicable to several instances of a resource type. The 

algorithm employs several time-varying data structures that are similar to those used in the 

banker's algorithm. 

 Available: A vector of length m indicates the number of available resources of each 

type. 

 Allocation: An n x m matrix defines the number of resources of each type currently 

allocated to each process. 

 Request: An n x m matrix indicates the current request of each process. If Request[i][j] 

equals k, then process P; is requesting k more instances of resource type Rj. 

Algorithm: 

1. Let Work and Finish be vectors of length m and n, respectively Initialize:  

 Work = Available 

For i = 1,2, …, n, if Allocationi  0, then Finish[i] = false; otherwise, Finish[i] = true 
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2. Find an index i such that both: 

Finish[i] == false  

Requesti Work 

If no such i exists, go to step 4 

3. Work = Work + Allocationi 

Finish[i] = true 

 go to step 2 

4. If Finish[i] == false, for some i, 1 i n, then the system is in deadlock state. 

Moreover, if Finish[i] == false, then Pi is deadlocked 

Algorithm requires an order of O(m x n2) operations to detect whether the system is in 

deadlocked state. 

 

Example of Detection Algorithm 

Consider a system with five processes Po through P4 and three resource types A, B, and C. 

Resource type A has seven instances, resource type B has two instances, and resource type C has 

six instances. Suppose that, at time T0, the following resource-allocation state: 

 

 

 

After executing the algorithm, Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for 

all i 

Suppose now that process P2 makes one additional request for an instance of type C. The 

Request matrix is modified as follows: 
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The system is now deadlocked. Although we can reclaim the resources held by process Po, the 

number of available resources is not sufficient to fulfill the requests of the other processes. Thus, 

a deadlock exists, consisting of processes P1, P2, P3, and P4. 

 

Detection-Algorithm Usage 

The detection algorithm can be invoked on two factors: 

1. How often is a deadlock likely to occur? 

2. How many processes will be affected by deadlock when it happens? 

If deadlocks occur frequently, then the detection algorithm should be invoked frequently. 

Resources allocated to deadlocked processes will be idle until the deadlock can be broken. 

If detection algorithm is invoked arbitrarily, there may be many cycles in the resource graph and 

so we would not be able to tell which of the many deadlocked processes “caused” the 

deadlock. 

 

RECOVERY FROM DEADLOCK 

The system recovers from the deadlock automatically. There are two options for breaking a 

deadlock one is simply to abort one or more processes to break the circular wait. The other is to 

preempt some resources from one or more of the deadlocked processes. 

Process Termination 

To eliminate deadlocks by aborting a process, use one of two methods. In both methods, the 

system reclaims all resources allocated to the terminated processes. 

1. Abort all deadlocked processes: This method clearly will break the deadlock cycle, but 

at great expense; the deadlocked processes may have computed for a long time, and the 
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results of these partial computations must be discarded and probably will have to be 

recomputed later. 

2. Abort one process at a time until the deadlock cycle is eliminated: This method incurs 

considerable overhead, since after each process is aborted, a deadlock-detection algorithm 

must be invoked to determine whether any processes are still deadlocked. 

If the partial termination method is used, then we must determine which deadlocked process (or 

processes) should be terminated. Many factors may affect which process is chosen, including: 

1. What the priority of the process is 

2. How long the process has computed and how much longer the process will compute 

before completing its designated task 

3. How many and what types of resources the process has used 

4. How many more resources the process needs in order to complete 

5. How many processes will need to be terminated? 

6. Whether the process is interactive or batch 

 

Resource Preemption 

To eliminate deadlocks using resource preemption, we successively preempt some resources 

from processes and give these resources to other processes until the deadlock cycle is broken. 

If preemption is required to deal with deadlocks, then three issues need to be addressed: 

1. Selecting a victim. Which resources and which processes are to be preempted? As in 

process termination, we must determine the order of preemption to minimize cost. Cost 

factors may include such parameters as the number of resources a deadlocked process is 

holding and the amount of time the process has thus far consumed during its execution. 

2. Rollback. If we preempt a resource from a process, what should be done with that 

process? Clearly, it cannot continue with its normal execution; it is missing some needed 

resource. We must roll back the process to some safe state and restart it from that state. 

Since it is difficult to determine what a safe state is, the simplest solution is a total 

rollback: abort the process and then restart it. 

3. Starvation. How do we ensure that starvation will not occur? That is, how can we 

guarantee that resources will not always be preempted from the same process? 
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MEMORY MANAGEMENT 

 

Memory Management Strategies 

 Every program to be executed has to be executed must be in memory. The instruction 

must be fetched from memory before it is executed. 

 In multi-tasking OS memory management is complex, because as processes are swapped 

in and out of the CPU, their code and data must be swapped in and out of memory. 

 

Background 

1) Basic Hardware 

 Main memory, cache and CPU registers in the processors are the only storage spaces that 

CPU can access directly. 

 The program and data must be bought into the memory from the disk, for the process to 

run. Each process has a separate memory space and must access only this range of legal 

addresses. Protection of memory is required to ensure correct operation. This prevention 

is provided by hardware implementation. 

 

 

A base and a limit-register define a logical-address space 

 

 Two registers are used - a base register and a limit register. The base register holds the 

smallest legal physical memory address; the limit register specifies the size of the range. 
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 For example, The base register holds the smallest legal physical memory address; the 

limit register specifies the size of the range. For example, if the base register holds 

300040 and limit register is 120900, then the program can legally access all addresses 

from 300040 through 420940 (inclusive) 

 The base and limit registers can be loaded only by the operating system, which uses a 

special privileged instruction. Since privileged instructions can be executed only in kernel 

mode only the operating system can load the base and limit registers. 

 

 Hardware address protection with base and limit-registers 

 

2) Address Binding 

 User programs typically refer to memory addresses with symbolic names. These 

symbolic names must be mapped or bound to physical memory addresses. 

 Address binding of instructions to memory-addresses can happen at 3 different stages. 

 

1. Compile Time - If it is known at compile time where a program will reside in physical 

memory, then absolute code can be generated by the compiler, containing actual physical 

addresses. However, if the load address changes at some later time, then the program will 

have to be recompiled. 

2. Load Time - If the location at which a program will be loaded is not known at compile 

time, then the compiler must generate relocatable code, which references addresses 

relative to the start of the program. If that starting address changes, then the program 

must be reloaded but not recompiled. 
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3. Execution Time - If a program can be moved around in memory during the course of its 

execution, then binding must be delayed until execution time. 

 

 

 Multistep processing of a user program 

 

3) Logical Versus Physical Address Space 

 The address generated by the CPU is a logical address, whereas the memory address 

where programs are actually stored is a physical address. 

 The set of all logical addresses used by a program composes the logical address space, 

and the set of all corresponding physical addresses composes the physical address space. 

 The run time mapping of logical to physical addresses is handled by the memory-

management unit (MMU). 

 One of the simplest is a modification of the base-register scheme. 

 The base register is termed a relocation register 

 The value in the relocation-register is added to every address generated by a user- 

process at the time it is sent to memory. 
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 The user-program deals with logical-addresses; it never sees the real physical- 

addresses.



Dynamic relocation using a relocation-register 

 

4) Dynamic Loading 

 This can be used to obtain better memory-space utilization. 

 A routine is not loaded until it is called. 

This works as follows: 

1. Initially, all routines are kept on disk in a relocatable-load format. 

2. Firstly, the main-program is loaded into memory and is executed. 

3. When a main-program calls the routine, the main-program first checks to see whether the 

routine has been loaded. 

4. If routine has been not yet loaded, the loader is called to load desired routine into 

memory. 

5. Finally, control is passed to the newly loaded-routine. 

 

Advantages: 

1. An unused routine is never loaded. 

2. Useful when large amounts of code are needed to handle infrequently occurring cases. 

3. Although the total program-size may be large, the portion that is used (and hence  loaded) 

may be much smaller. 

4. Does not require special support from the OS. 
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5) Dynamic Linking and Shared Libraries 

 With static linking library modules get fully included in executable modules, wasting 

both disk space and main memory usage, because every program that included a certain 

routine from the library would have to have their own copy of that routine linked into 

their executable code. 

 With dynamic linking, however, only a stub is linked into the executable module, 

containing references to the actual library module linked in at run time. 

 The stub is a small piece of code used to locate the appropriate memory- resident 

library-routine. 

 This method saves disk space, because the library routines do not need to be fully 

included in the executable modules, only the stubs. 

 An added benefit of dynamically linked libraries (DLLs, also known as shared 

libraries or shared objects on UNIX systems) involves easy upgrades and updates. 

6) Shared libraries 

 A library may be replaced by a new version, and all programs that reference the library 

will automatically use the new one. 

 Version info is included in both program & library so that programs won't accidentally 

execute incompatible versions. 

 

Swapping 

 A process must be loaded into memory in order to execute. 

 If there is not enough memory available to keep all running processes in memory at the 

same time, then some processes that are not currently using the CPU may have their 

memory swapped out to a fast local disk called the backing store. 

 Swapping is the process of moving a process from memory to backing store and 

moving another process from backing store to memory. Swapping is a very slow 

process compared to other operations. 

 A variant of swapping policy is used for priority-based scheduling algorithms. If a 

higher-priority process arrives and wants service, the memory manager can swap out the 

lower-priority process and then load and execute the higher-priority process. When the 
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higher-priority process finishes, the lower-priority process can be swapped back in and 

continued. This variant of swapping is called roll out, roll in. 

 

Swapping depends upon address-binding: 

 If binding is done at load-time, then process cannot be easily moved to a different 

location. 

 If binding is done at execution-time, then a process can be swapped into a different 

memory-space, because the physical-addresses are computed during execution-time. 

 

Major part of swap-time is transfer-time; i.e. total transfer-time is directly proportional to the 

amount of memory swapped. 

 

Disadvantages: 

1. Context-switch time is fairly high. 

2. If we want to swap a process, we must be sure that it is completely idle. Two solutions: 

 Never swap a process with pending I/O. 

 Execute I/O operations only into OS buffers. 

 
Swapping of two processes using a disk as a backing store 

 

Example: 

Assume that the user process is 10 MB in size and the backing store is a standard hard disk 

with a transfer rate of 40 MB per second. 
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The actual transfer of the 10-MB process to or from main memory takes10000 KB/40000 KB per 

second = 1/4 second 

= 250 milliseconds. 

Assuming that no head seeks are necessary, and assuming an average latency of 8 milliseconds, 

the swap time is 258 milliseconds. Since we must both swap out and swap in, the total swap time 

is about 516 milliseconds. 

 

Contiguous Memory Allocation 

 The main memory must accommodate both the operating system and the various user 

processes. Therefore we need to allocate the parts of the main memory in the most 

efficient way possible. 

 Memory is usually divided into 2 partitions: One for the resident OS. One for the user 

processes. 

 Each process is contained in a single contiguous section of memory. 

 

1) Memory Mapping and Protection 

 Memory-protection means protecting OS from user-process and protecting user- 

processes from one another. 

 Memory-protection is done using 

 Relocation-register: contains the value of the smallest physical-address. 

 Limit-register: contains the range of logical-addresses. 

 Each logical-address must be less than the limit-register. 

 The MMU maps the logical-address dynamically by adding the value in the 

relocation-register. This mapped-address is sent to memory 

 When the CPU scheduler selects a process for execution, the dispatcher loads the 

relocation and limit-registers with the correct values. 

 Because every address generated by the CPU is checked against these registers, we 

canprotect the OS from the running-process. 

 The relocation-register scheme provides an effective way to allow the OS size to 

changedynamically. 
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 Transient OS code: Code that comes & goes as needed to save memory-space and 

overhead for unnecessary swapping. 

 

 

 

Hardware support for relocation and limit-registers 

 

2) Memory Allocation 

Two types of memory partitioning are: 

1. Fixed-sized partitioning 

2. Variable-sized partitioning 

 

1) Fixed-sized partitioning 

 The memory is divided into fixed-sized partitions. 

 Each partition may contain exactly one process. 

 The degree of multiprogramming is bound by the number of partitions. 

 When a partition is free, a process is selected from the input queue and loaded 

in to  the free partition. 

 When the process terminates, the partition becomes available for another process. 

 

2) Variable-sized Partitioning 

 The OS keeps a table indicating which parts of memory are available and which 

parts are occupied. 

 A hole is a block of available memory. Normally, memory contains a set of 
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holes of various sizes. 

 Initially, all memory is available for user-processes and considered one large hole. 

 When a process arrives, the process is allocated memory from a large hole. 

 If we find the hole, we allocate only as much memory as is needed and keep 

the remaining memory available to satisfy future requests. 

 

Three strategies used to select a free hole from the set of available holes: 

1. First Fit: Allocate the first hole that is big enough. Searching can start either at the 

beginning of the set of holes or at the location where the previous first-fit search ended. 

2. Best Fit: Allocate the smallest hole that is big enough. We must search the entire list, 

unless the list is ordered by size. This strategy produces the smallest leftover hole. 

3. Worst Fit: Allocate the largest hole. Again, we must search the entire list, unless it 

is sorted by size. This strategy produces the largest leftover hole. 

First-fit and best fit are better than worst fit in terms of decreasing time and storage utilization. 

 

3) Fragmentation 

Two types of memory fragmentation: 

1. Internal fragmentation 

2. External fragmentation 

 

1) Internal Fragmentation 

 The general approach is to break the physical-memory into fixed-sized blocks and 

allocate memory in units based on block size. 

 The allocated-memory to a process may be slightly larger than the requested-

memory. 

 The difference between requested-memory and allocated-memory is called 

internal fragmentation i.e. Unused memory that is internal to a partition. 

 

2) External Fragmentation 

 External fragmentation occurs when there is enough total memory-space to satisfy 

a request but the available-spaces are not contiguous. (i.e. storage is 
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fragmented into a large number of small holes). 

 Both the first-fit and best-fit strategies for memory-allocation suffer from external 

fragmentation. 

 Statistical analysis of first-fit reveals that given N allocated blocks, another 0.5 N 

blocks will be lost to fragmentation. This property is known as the 50-percent rule. 

 

Two solutions to external fragmentation: 

 Compaction: The goal is to shuffle the memory-contents to place all free memory 

together in one large hole. Compaction is possible only if relocation is dynamic and do 

neat execution-time. 

 Permit the logical-address space of the processes to be non-contiguous. This allows a 

process to be allocated physical-memory wherever such memory is available. Two 

techniques achieve this solution: 1) Paging and 2) Segmentation. 

 

Paging 

 Paging is a memory-management scheme. 

 This permits the physical-address space of a process to be non-contiguous. 

 This also solves the considerable problem of fitting memory-chunks of varying  sizes 

onto the backing-store. 

 Traditionally: Support for paging has been handled by hardware. 

 Recent designs: The hardware & OS are closely integrated. 

 

1) Basic Method of Paging 

 The basic method for implementing paging involves breaking physical memory into 

fixed-sized blocks called frames and breaking logical memory into blocks of the same size 

called pages. 

 When a process is to be executed, its pages are loaded into any available memory frames 

from the backing store. 

 The backing store is divided into fixed-sized blocks that are of the same size as the 

memory frames. 
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Paging hardware  

 Address generated by CPU is divided into 2 parts: 

1. Page-number (p) is used as an index to the page-table. The page-table contains  the 

base-address of each page in physical-memory. 

2. Offset (d) is combined with the base-address to define the physical-address. 

This physical-address is sent to the memory-unit. 

 The page table maps the page number to a frame number, to yield a physical address. 

 The page table maps the page number to a frame number, to yield a physical address 

which also has two parts: The frame number and the offset within that frame. 

 The number of bits in the frame number determines how many frames the system  

can  address, and the number of bits in the offset determines the size of each frame. 

 

Paging model of logical and physical memory. 

 

 The page size (like the frame size) is defined by the hardware. 
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 The size of a page is typically a power of 2, varying between 512 bytes and 16 MB per 

page, depending on the computer architecture. 

 The selection of a power of 2 as a page size makes the translation of a logical address into 

a page number and page offset. 

 If the size of logical address space is 2m and a page size is 2n addressing units (bytes or 

words), then the high-order m – n bits of a logical address designate the page number, 

and the n low-order bits designate the page offset. 

 

Thus, the logical address is as follows: 

 

page number page offset 

p d 

m -n n 

 

 
 

Free frames (a) before allocation and (b) after allocation. 

 

 When a process requests memory (e.g. when its code is loaded in from disk), free frames 

are allocated from a free-frame list, and inserted into that process's page table. 

 Processes are blocked from accessing anyone else's memory because all of their memory 

requests are mapped through their page table. There is no way for them to generate an 

address that maps into any other process's memory space. 
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 The operating system must keep track of each individual process's page table, updating it 

whenever the process's pages get moved in and out of memory, and applying the correct 

page table when processing system calls for a particular process. This all increases the 

overhead involved when swapping processes in and out of the CPU. 

 

2) Hardware Support Translation Look aside Buffer 

 A special, small, fast lookup hardware cache, called a translation look-aside buffer 

(TLB). 

 Each entry in the TLB consists of two parts: a key (or tag) and a value. 

 When the associative memory is presented with an item, the item is compared with all 

keys simultaneously. If the item is found, the corresponding value field is returned. The 

search is fast; the hardware, however, is expensive. Typically, the number of entries in a 

TLB is small, often numbering between 64 and 1,024. 

 The TLB contains only a few of the page-table entries. 

 

Working: 

 

Paging hardware with TLB 
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 When a logical-address is generated by the CPU, its page-number is presented to the 

TLB. 

 If the page-number is found (TLB hit), its frame-number is immediately available and 

used to access memory. 

 If page-number is not in TLB (TLB miss), a memory-reference to page table must be 

made. The obtained frame-number can be used to access memory. 

 In addition, we add the page-number and frame-number to the TLB, so that they will 

be found quickly on the next reference. 

 If the TLB is already full of entries, the OS must select one for replacement. 

 Percentage of times that a particular page-number is found in the TLB is called hit 

ratio. 

 

Advantage: Search operation is fast. 

Disadvantage: Hardware is expensive. 

 Some TLBs have wired down entries that can't be removed. 

 Some TLBs store ASID (address-space identifier) in each entry of the TLB that  uniquely 

identify each process and provide address space protection for that process. 

 

3) Protection 

 Memory-protection is achieved by protection-bits for each frame. 

 The protection-bits are kept in the page-table. 

 One protection-bit can define a page to be read-write or read-only. 

 Every reference to memory goes through the page-table to find the correct frame- 

number. 

 Firstly, the physical-address is computed. At the same time, the protection-bit is checked 

to verify that no writes are being made to a read-only page. 

 An attempt to write to a read-only page causes a hardware-trap to the OS (or memory 

protection violation). 

 

Valid Invalid Bit 

 This bit is attached to each entry in the page-table. 
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 Valid bit: “valid” indicates that the associated page is in the process’ logical 

addressspace, and is thus a legal page 

 Invalid bit: “invalid” indicates that the page is not in the process’ logical address 

space 

Illegal addresses are trapped by use of valid-invalid bit. 

The OS sets this bit for each page to allow or disallow access to the page. 

 

Valid (v) or invalid (i) bit in a page-table 

 

4) Shared Pages 

 An advantage of paging is the possibility of sharing common code. 

 Re-entrant code (Pure Code) is non-self-modifying code, it never changes during 

execution. 

 Two or more processes can execute the same code at the same time. 

 Each process has its own copy of registers and data-storage to hold the data for      

the process's execution. 

 The data for 2 different processes will be different. 

 Only one copy of the editor need be kept in physical-memory (Figure 5.12). 

 Each user's page-table maps onto the same physical copy of the editor, but data pages  are 
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mapped onto different frames. 

 

Disadvantage: Systems that use inverted page-tables have difficulty implementing shared-

memory. 

 

Sharing of code in a paging environment 

 

Structure of the Page Table 

The most common techniques for structuring the page table: 

1. Hierarchical Paging 

2. Hashed Page-tables 

3. Inverted Page-tables 

 

1) Hierarchical Paging 

 Problem: Most computers support a large logical-address space (232 to 264). In  these 

systems, the page-table itself becomes excessively large. 

 Solution: Divide the page-table into smaller pieces. 

Two Level Paging Algorithm: 

 The page-table itself is also paged. 
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 This is also known as a forward-mapped page-table because address translation works 

from the outer page-table inwards. 

 
A two-level page-table scheme 

 

For example: 

Consider the system with a 32-bit logical-address space and a page-size of 4 KB. A logical- 

address is divided into 

 20-bit page-number and 

 12-bit page-offset. 

Since the page-table is paged, the page-number is further divided into  

 10-bit page-number and 

 10-bit page-offset. 

Thus, a logical-address is as follows: 

 

 where p1 is an index into the outer page table, and p2 is the displacement within the page 

of the inner page table. 

The address-translation method for this architecture is shown in below figure. Because address 

translation works from the outer page table inward, this scheme is also known as a forward- 

mapped page table. 
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Address translation for a two-level 32-bit paging architecture 

 

2) Hashed Page Tables 

 This approach is used for handling address spaces larger than 32 bits. 

 The hash-value is the virtual page-number. 

 Each entry in the hash-table contains a linked-list of elements that hash to the same 

location (to handle collisions). 

 Each element consists of 3 fields: 

 Virtual page-number 

 Value of the mapped page-frame and 

 Pointer to the next element in the linked-list. 
 

The algorithm works as follows: 

 

Hashed page-table 
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 The virtual page-number is hashed into the hash-table. 

 The virtual page-number is compared with the first element in the linked-list. 

 If there is a match, the corresponding page-frame (field 2) is used to form the desired 

physical-address. 

 If there is no match, subsequent entries in the linked-list are searched for a  matching 

virtual page-number. 

 

3) Inverted Page Tables 

 Has one entry for each real page of memory. 

 Each entry consists of virtual-address of the page stored in that real memory- 

location and information about the process that owns the page. 

 Each virtual-address consists of a triplet <process-id, page-number, offset>. 

 Each inverted page-table entry is a pair <process-id, page-number> 

 

Inverted page-table 

 

The algorithm works as follows: 

1. When a memory-reference occurs, part of the virtual-address, consisting of 

<process-id, page-number>, is presented to the memory subsystem. 

2. The inverted page-table is then searched for a match. 

3. If a match is found, at entry i-then the physical-address <i, offset> is generated. 

4. If no match is found, then an illegal address access has been attempted. 
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Advantage: Decreases memory needed to store each page-table 

Disadvantages: 

1. Increases amount of time needed to search table when a page reference occurs. 

2. Difficulty implementing shared-memory 

 

Segmentation 

Basic Method of Segmentation 

 This is a memory-management scheme that supports user-view of memory. 

 A logical-address space is a collection of segments. 

 Each segment has a name and a length. 

 The addresses specify both segment-name and offset within the segment. 

 Normally, the user-program is compiled, and the compiler automatically constructs 

segments reflecting the input program. 

 

Programmer’s view of a program 

 

Hardware support for Segmentation 

 Segment-table maps 2 dimensional user-defined addresses into one-dimensional 

physical addresses. 

 In the segment-table, each entry has following 2 fields: 

1. Segment-base contains starting physical-address where the segment resides in 

memory. 

2. Segment-limit specifies the length of the segment 

 A logical-address consists of 2 parts: 
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1. Segment-number(s) is used as an index to the segment-table 

2. Offset(d) must be between 0 and the segment-limit. 

 If offset is not between 0 & segment-limit, then we trap to the OS (logical- addressing 

attempt beyond end of segment). 

 If offset is legal, then it is added to the segment-base to produce the physical- 

memory address. 

 

 Segmentation hardware 

 

 

 


