
Operating Systems 22AI303

1 Dept. of CSE (AIML), MCE, Hassan

MODULE 4

1. Virtual Memory Management

 Background

 Demand Paging

 Page Replacement

2. Storage Management

 Mass Storage Structures

 Disk Structure

 Disk Scheduling

 Swap Space Management

3. Protection

 Goals of Protection

 Principles of Protection

 Domain of Protection

 Domain Structure

 Access Matrix

 Implementation of Access Matrix

Operating Systems 22AI303

2 Dept. of CSE (AIML), MCE, Hassan

VIRTUAL MEMORY MANAGEMENT

Background

 Virtual memory is a technique that allows for the execution of partially loaded process.

 Advantages:

 A program will not be limited by the amount of physical memory that is available

user can able to write in to large virtual space.

 Since each program takes less amount of physical memory, more than one

program could be run at the same time which can increase the throughput and

CPU utilization.

 Less i/o operation is needed to swap or load user program in to memory. So each

user program could run faster.

Virtual memory that is larger than physical memory.

 Virtual memory is the separation of user’s logical memory from physical memory. This

separation allows an extremely large virtual memory to be provided when these is less

physical memory.

 Separating logical memory from physical memory also allows files and memory to be

shared by several different processes through page sharing.

Operating Systems 22AI303

3 Dept. of CSE (AIML), MCE, Hassan

Shared Library using Virtual Memory

 Virtual memory is implemented using Demand Paging.

 Virtual address space: Every process has a virtual address space i.e used as the stack or

heap grows in size.

 Virtual address space

Demand Paging

 A demand paging is similar to paging system with swapping when we want to execute a

process we swap the process the in to memory otherwise it will not be loaded in to

memory.

 A swapper manipulates the entire processes, where as a pager manipulates individual

pages of the process.

Operating Systems 22AI303

4 Dept. of CSE (AIML), MCE, Hassan

 Bring a page into memory only when it is needed

 Less I/O needed

 Less memory needed

 Faster response

 More users

 Page is needed ⇒ reference to it

 invalid reference ⇒abort

 not-in-memory ⇒ bring to memory

 Lazy swapper– never swaps a page into memory unless page will be needed

 Swapper that deals with pages is a pager.

Transfer of a paged memory into continuous disk space

1) Basic concept:

 Instead of swapping the whole process the pager swaps only the necessary pages in to

memory. Thus it avoids reading unused pages and decreases the swap time and amount

of physical memory needed.

 The valid-invalid bit scheme can be used to distinguish between the pages that are on the

disk and that are in memory.

 With each page table entry a valid–invalid bit is associated

 (v ⇒ in-memory, i⇒ not-in-memory)

Operating Systems 22AI303

5 Dept. of CSE (AIML), MCE, Hassan

 Initially valid–invalid bit is set to i on all entries

 Example of a page table snapshot:

 During address translation, if valid–invalid bit in page table entry is i ⇒ page fault.

 If the bit is valid then the page is both legal and is in memory.

 If the bit is invalid then either page is not valid or is valid but is currently on the disk.

Marking a page as invalid will have no effect if the processes never access to that page.

Suppose if it access the page which is marked invalid, causes a page fault trap. This may

result in failure of OS to bring the desired page in to memory

Page Table when some pages are not in main memory

Operating Systems 22AI303

6 Dept. of CSE (AIML), MCE, Hassan

Page Fault

If a page is needed that was not originally loaded up, then a page fault trap is generated.

Steps in Handling a Page Fault

1. The memory address requested is first checked, to make sure it was a valid memory

request.

2. If the reference is to an invalid page, the process is terminated. Otherwise, if the page is

not present in memory, it must be paged in.

3. A free frame is located, possibly from a free-frame list.

4. A disk operation is scheduled to bring in the necessary page from disk.

5. After the page is loaded to memory, the process's page table is updated with the new

frame number, and the invalid bit is changed to indicate that this is now a valid page

reference.

6. The instruction that caused the page fault must now be restarted from the beginning.

Steps in handling page fault

Pure Demand Paging: Never bring a page into main memory until it is required.

 We can start executing a process without loading any of its pages into main memory.

 Page fault occurs for the non memory resident pages.

 After the page is brought into memory, process continues to execute.

 Again page fault occurs for the next page.

Operating Systems 22AI303

7 Dept. of CSE (AIML), MCE, Hassan

Hardware support: For demand paging the same hardware is required as paging and

swapping.

1. Page table:- Has the ability to mark an entry invalid through valid-invalid bit.

2. Secondary memory:- This holds the pages that are not present in main memory.

2) Performance of Demand Paging:

Demand paging can have significant effect on the performance of the computer system.

 Let P be the probability of the page fault (0<=P<=1)

 Effective access time = (1-P) * ma + P * page fault.

 Where P = page fault and ma = memory access time.

 Effective access time is directly proportional to page fault rate. It is important to keep

page fault rate low in demand paging.

Demand Paging Example

 Memory access time = 200 nanoseconds

 Average page-fault service time = 8milliseconds

 EAT = (1 – p) x 200 + p (8milliseconds)

= (1 – p x 200 + p x 8,000,000

= 200 + p x 7,999,800

 If one access out of 1,000 causes a page fault, then EAT = 8.2 microseconds. This is a

slowdown by a factor of 40.

Page Replacement

 Page replacement policy deals with the solution of pages in memory to be replaced by a

new page that must be brought in. When a user process is executing a page fault occurs.

 The hardware traps to the operating system, which checks the internal table to see that this

is a page fault and not an illegal memory access.

 The operating system determines where the derived page is residing on the disk, and

this finds that there are no free frames on the list of free frames.

 When all the frames are in main memory, it is necessary to bring a new page to satisfy the

Operating Systems 22AI303

8 Dept. of CSE (AIML), MCE, Hassan

page fault, replacement policy is concerned with selecting a page currently in memory to

be replaced.

 The page i,e to be removed should be the page i,e least likely to be referenced in future.

Page Replacement

Working of Page Replacement Algorithm

1. Find the location of derived page on the disk.

2. Find a free frame

 If there is a free frame, use it.

 Otherwise, use a replacement algorithm to select a victim.

 Write the victim page to the disk.

 Change the page and frame tables accordingly.

3. Read the desired page into the free frame; change the page and frame tables.

4. Restart the user process.

Victim Page

 The page that is supported out of physical memory is called victim page.

 If no frames are free, the two page transforms come (out and one in) are read. This will

see the effective access time.

 Each page or frame may have a dirty (modify) bit associated with the hardware. The

modify bit for a page is set by the hardware whenever any word or byte in the page is

Operating Systems 22AI303

9 Dept. of CSE (AIML), MCE, Hassan

written into, indicating that the page has been modified.

 When we select the page for replacement, we check its modify bit. If the bit is set, then

the page is modified since it was read from the disk.

 If the bit was not set, the page has not been modified since it was read into memory.

Therefore, if the copy of the page has not been modified we can avoid writing the

memory page to the disk, if it is already there. Sum pages cannot be modified.

Modify bit/ Dirty bit :

 Each page/frame has a modify bit associated with it.

 If the page is not modified (read-only) then one can discard such page without writing it

onto the disk. Modify bit of such page is set to 0.

 Modify bit is set to 1, if the page has been modified. Such pages must be written to the

disk.

 Modify bit is used to reduce overhead of page transfers – only modified pages are

written to disk.

PAGE REPLACEMENT ALGORITHMS

 Want lowest page-fault rate

 Evaluate algorithm by running it on a particular string of memory references (reference

string) and computing the number of page faults on that string

 In all our examples, the reference string is

7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1

1) FIFO Algorithm:

 This is the simplest page replacement algorithm. A FIFO replacement algorithm

associates each page the time when that page was brought into memory.

 When a Page is to be replaced the oldest one is selected.

 We replace the queue at the head of the queue. When a page is brought into memory, we

insert it at the tail of the queue.

 In the following example, a reference string is given and there are 3 free frames.

There are 20 page requests, which results in 15 page faults.

Operating Systems 22AI303

10 Dept. of CSE (AIML), MCE, Hassan

Belady’s Anomaly

 For some page replacement algorithm, the page fault may increase as the number of

allocated frames increases. FIFO replacement algorithm may face this problem.

more frames ⇒ more page faults

Example: Consider the following references string with frames initially empty.

 The first three references (7,0,1) cases page faults and are brought into the empty frames.

 The next references 2 replaces page 7 because the page 7 was brought in first. Since 0 is

the next references and 0 is already in memory e has no page faults.

 The next references 3 results in page 0 being replaced so that the next references to 0

causer page fault. This will continue till the end of string. There are 15 faults all together.

FIFO Illustrating Belady’s Anomaly

Operating Systems 22AI303

11 Dept. of CSE (AIML), MCE, Hassan

2) Optimal Algorithm

 Optimal page replacement algorithm is mainly to solve the problem of Belady’s

Anomaly.

 Optimal page replacement algorithm has the lowest page fault rate of all algorithms.

 An optimal page replacement algorithm exists and has been called OPT.

The working is simple “Replace the page that will not be used for the longest period of

time”

Example: consider the following reference string

 The first three references cause faults that fill the three empty frames.

 The references to page 2 replaces page 7, because 7 will not be used until reference

18. The page 0 will be used at 5 and page 1 at 14.

 With only 9 page faults, optimal replacement is much better than a FIFO, which had 15

faults. This algorithm is difficult t implement because it requires future knowledge of

reference strings.

 Replace page that will not be used for longest period of time

3) Least Recently Used (LRU) Algorithm

 The LRU (Least Recently Used) algorithm, predicts that the page that has not been

used in the longest time is the one that will not be used again in the near future.

 Some view LRU as analogous to OPT, but here we look backwards in time instead of

forwards.

Operating Systems 22AI303

12 Dept. of CSE (AIML), MCE, Hassan

The main problem to how to implement LRU is the LRU requires additional h/w assistance.

Two implementation are possible:

1. Counters: In this we associate each page table entry a time -of -use field, and add to the

CPU a logical clock or counter. The clock is incremented for each memory reference.

When a reference to a page is made, the contents of the clock register are copied to the

time-of-use field in the page table entry for that page. In this way we have the time of last

reference to each page we replace the page with smallest time value. The time must also

be maintained when page tables are changed.

2. Stack: Another approach to implement LRU replacement is to keep a stack of page

numbers when a page is referenced it is removed from the stack and put on to the top of

stack. In this way the top of stack is always the most recently used page and the bottom in

least recently used page. Since the entries are removed from the stack it is best

implement by a doubly linked list. With a head and tail pointer.

Note: Neither optimal replacement nor LRU replacement suffers from Belady’s Anamoly. These

are called stack algorithms.

LRU-Approximation Page Replacement

 Many systems offer some degree of hardware support, enough to approximate LRU.

 In particular, many systems provide a reference bit for every entry in a page table, which

is set anytime that page is accessed. Initially all bits are set to zero, and they can also all

be cleared at any time. One bit distinguishes pages that have been accessed since the last

clear from those that have not been accessed.

Operating Systems 22AI303

13 Dept. of CSE (AIML), MCE, Hassan

i) Additional-Reference-Bits Algorithm

 An 8-bit byte (reference bit) is stored for each page in a table in memory.

 At regular intervals (say, every 100 milliseconds), a timer interrupt transfers control to

the operating system. The operating system shifts the reference bit for each page into the

high-order bit of its 8-bit byte, shifting the other bits right by 1 bit and discarding the

low- order bit.

 These 8-bit shift registers contain the history of page use for the last eight time periods.

 If the shift register contains 00000000, then the page has not been used for eight time

periods.

 A page with a history register value of 11000100 has been used more recently than one

with a value of 01110111.

ii) Second- chance (clock) page replacement algorithm

 The second chance algorithm is a FIFO replacement algorithm, except the reference

bit is used to give pages a second chance at staying in the page table.

 When a page must be replaced, the page table is scanned in a FIFO (circular queue)

manner.

 If a page is found with its reference bit as ‘0’, then that page is selected as the next

victim.

 If the reference bitvalueis‘1’, then the page is given a second chance and its reference

Operating Systems 22AI303

14 Dept. of CSE (AIML), MCE, Hassan

bit value is cleared (assigned as ‘0’).

 Thus, a page that is given a second chance will not be replaced until all other pages

have been replaced (or given second chances). In addition, if a page is used often, then

it sets its reference bit again.

 This algorithm is also known as the clock algorithm.

iii) Enhanced Second-Chance Algorithm

 The enhanced second chance algorithm looks at the reference bit and the modify bit (

dirty bit) as an ordered page, and classifies pages into one of four classes:

1. (0, 0) - Neither recently used nor modified.

2. (0, 1) - Not recently used, but modified.

3. (1, 0) - Recently used, but clean.

4. (1, 1) - Recently used and modified.

 This algorithm searches the page table in a circular fashion, looking for the first page it

can find in the lowest numbered category. i.e. it first makes a pass looking for a (0, 0),

and then if it can't find one, it makes another pass looking for a (0,1) etc.

 The main difference between this algorithm and the previous one is the preference for

replacing clean pages if possible.

iv) Count Based Page Replacement

There is many other algorithms that can be used for page replacement, we can keep a counter of

the number of references that has made to a page.

1. LFU (least frequently used): This causes the page with the smallest count to be

replaced. The reason for this selection is that actively used page should have a large

reference count. This algorithm suffers from the situation in which a page is used heavily

during the initial phase of a process but never used again. Since it was used heavily, it has

a large count and remains in memory even though it is no longer needed.

2. MFU Algorithm: based on the argument that the page with the smallest count was

probably just brought in and has yet to be used.

Operating Systems 22AI303

15 Dept. of CSE (AIML), MCE, Hassan

STORAGE MANAGEMENT

Mass Storage Structure

1) Magnetic Disks

 Magnetic disks provide the bulk of secondary storage for modern computer systems.

 Each disk platter has a flat circular shape, like a CD. Common platter diameters range

from 1.8 to 5.25 inches.

 The two surfaces of a platter are covered with a magnetic material. The information

stored by recording it magnetically on the platters.

 The surface of a platter is logically divided into circular tracks, which are subdivided into

sectors. Sector is the basic unit of storage. The set of tracks that are at one arm position

makes up a cylinder.

 The number of cylinders in the disk drive equals the number of tracks in each platter.

 There may be thousands of concentric cylinders in a disk drive, and each track may

contain hundreds of sectors.

Moving-head disk mechanism

 Seek Time:- Seek time is the time required to move the disk arm to the required track.

 Rotational Latency (Rotational Delay):- Rotational latency is the time taken for the

disk to rotate so that the required sector comes under the r/w head.

 Positioning time or random access time is the summation of seek time and rotational

Operating Systems 22AI303

16 Dept. of CSE (AIML), MCE, Hassan

delay.

 Disk Bandwidth:- Disk bandwidth is the total number of bytes transferred divided by

total time between the first request for service and the completion of last transfer.

 Transfer rate is the rate at which data flow between the drive and the computer.

As the disk head flies on an extremely thin cushion of air, the head will make contact with the

disk surface. Although the disk platters are coated with a thin protective layer, sometimes the

head will damage the magnetic surface. This accident is called a head crash.

2) Magnetic Tapes

 Magnetic tape is a secondary-storage medium. It is a permanent memory and can hold

large quantities of data.

 The time taken to access data (access time) is large compared with that of magnetic disk,

because here data is accessed sequentially.

 When the nth data has to be read, the tape starts moving from first and reaches the nth

position and then data is read from nth position. It is not possible to directly move to the

nth position. So tapes are used mainly for backup, for storage of infrequently used

information.

 A tape is kept in a spool and is wound or rewound past a read-write head. Moving to the

correct spot on a tape can take minutes, but once positioned, tape drives can write data at

speeds comparable to disk drives.

Disk Structure

 Modern disk drives are addressed as a large one-dimensional array. The one- dimensional

array of logical blocks is mapped onto the sectors of the disk sequentially.

 Sector 0 is the first sector of the first track on the outermost cylinder. The mapping

proceeds in order through that track, then through the rest of the tracks in that cylinder,

and then through the rest of the cylinders from outermost to innermost.

The disk structure (architecture) can be of two types –

1. Constant Linear Velocity (CLV)

2. Constant Angular Velocity (CAV)

Operating Systems 22AI303

17 Dept. of CSE (AIML), MCE, Hassan

1. CLV – The density of bits per track is uniform. The farther a track is from the center of

the disk, the greater its length, so the more sectors it can hold. As we move from outer

zones to inner zones, the number of sectors per track decreases. This architecture is used

in CD-ROM and DVD-ROM.

2. CAV – There is same number of sectors in each track. The sectors are densely packed in

the inner tracks. The density of bits decreases from inner tracks to outer tracks to keep the

data rate constant.

Disk Scheduling

Different types of disk scheduling algorithms are as follows:

1. FCFS (First Come First Serve)

2. SSTF (Shortest Seek Time First)

3. SCAN (Elevator)

4. C-SCAN

5. LOOK

6. C-LOOK

1) FCFS scheduling algorithm:

This is the simplest form of disk scheduling algorithm. This services the request in the order they

are received. This algorithm is fair but do not provide fastest service. It takes no special care to

minimize the overall seek time.

Eg:- consider a disk queue with request for i/o to blocks on cylinders. 98, 183, 37, 122, 14, 124,

65, 67

If the disk head is initially at 53, it will first move from 53 to 98 then to 183 and then to 37, 122,

14, 124, 65, 67 for a total head movement of 640 cylinders. The wild swing from 122 to 14 and

Operating Systems 22AI303

18 Dept. of CSE (AIML), MCE, Hassan

then back to 124 illustrates the problem with this schedule.

2) SSTF (Shortest Seek Time First) algorithm:

This selects the request with minimum seek time from the current head position. SSTF

chooses the pending request closest to the current head position.

Eg:- consider a disk queue with request for i/o to blocks on cylinders. 98, 183, 37, 122, 14,

124, 65, 67

If the disk head is initially at 53, the closest is at cylinder 65, then 67, then 37 is closer than 98

to 67. So it services 37, continuing we service 14, 98, 122, 124 and finally 183. The total head

movement is only 236 cylinders. SSTF is a substantial improvement over FCFS, it is not

optimal.

3) SCAN algorithm:

In this the disk arm starts moving towards one end, servicing the request as it reaches each

Operating Systems 22AI303

19 Dept. of CSE (AIML), MCE, Hassan

cylinder until it gets to the other end of the disk. At the other end, the direction of the head

movement is reversed and servicing continues. The initial direction is chosen depending upon the

direction of the head.

Eg:- consider a disk queue with request for i/o to blocks on cylinders. 98, 183, 37, 122, 14, 124,

65, 67

If the disk head is initially at 53 and if the head is moving towards the outer track, it services

65, 67, 98, 122, 124 and 183. At cylinder 199 the arm will reverse and will move towards the

other end of the disk servicing 37 and then 14. The SCAN is also called as elevator algorithm.

4) C-SCAN (Circular scan) algorithm:

C-SCAN is a variant of SCAN designed to provide a more uniform wait time.

Like SCAN, C-SCAN moves the head from end of the disk to the other servicing the request

along the way. When the head reaches the other end, it immediately returns to the beginning of

the disk, without servicing any request on the return.

Eg:- consider a disk queue with request for i/o to blocks on cylinders. 98, 183, 37, 122, 14, 124,

65, 67

If the disk head is initially at 53 and if the head is moving towards the outer track, it services 65,

67, 98, 122, 124 and 183. At cylinder 199 the arm will reverse and will move immediately

towards the other end of the disk, then changes the direction of head and serves 14 and then 37.

Note: If the disk head is initially at 53 and if the head is moving towards track 0, it services 37

and 14 first. At cylinder 0 the arm will reverse and will move immediately towards the other end

of the disk servicing 65, 67, 98, 122, 124 and 183.

Operating Systems 22AI303

20 Dept. of CSE (AIML), MCE, Hassan

5) Look Scheduling algorithm:

Look and C-Look scheduling are different version of SCAN and C-SCAN respectively. Here the

arm goes only as far as the final request in each direction. Then it reverses, without going all the

way to the end of the disk. The Look and C-Look scheduling look for a request before continuing

to move in a given direction.

Eg:- consider a disk queue with request for i/o to blocks on cylinders. 98, 183, 37, 122, 14, 124,

65, 67

C-LOOK disk scheduling.

If the disk head is initially at 53 and if the head is moving towards the outer track, it services 65,

67, 98, 122, 124 and 183. At the final request 183, the arm will reverse and will move towards

the first request 14 and then serves 37.

Operating Systems 22AI303

21 Dept. of CSE (AIML), MCE, Hassan

Swap-Space Management

 Swap-space management is another low-level task of the operating system.

 Swapping occurs when the amount of physical memory reaches a critically low point and

processes are moved from memory to swap space to free available memory.

1) Swap-Space Use

 The amount of swap space needed on a system can vary depending on the amount of

physical memory, the amount of virtual memory it is backing, and the way in which the

virtual memory is used. It can range from a few megabytes of disk space to gigabytes.

 The swap space can overestimate or underestimated. It is safer to overestimate than to

underestimate the amount of swap space required. If a system runs out of swap space due

to underestimation of space, it may be forced to abort processes or may crash entirely.

Overestimation wastes disk space that could otherwise be used for files, but it does no

other harm.

2) Swap-Space Location

 A swap space can reside in one of two places: It can be carved out of the normal file

system, or it can be in a separate disk partition. If the swap space is simply a large file

within the file system, normal file-system routines can be used to create it, name it, and

allocate its space.

 External fragmentation can greatly increase swapping times by forcing multiple seeks

during reading or writing of a process image. We can improve performance by caching

the block location information in physical memory.

 Alternatively, swap space can be created in a separate raw partition. A separate swap-

space storage manager is used to allocate and deallocate the blocks from the raw

partition.

3) Swap-Space Management: An Example

 Solaris allocates swap space only when a page is forced out of physical memory, rather

than when the virtual memory page is first created.

 Linux is similar to Solaris in that swap space is only used for anonymous memory or for

Operating Systems 22AI303

22 Dept. of CSE (AIML), MCE, Hassan

regions of memory shared by several processes. Linux allows one or more swap areas to

be established.

 A swap area may be in either a swap file on a regular file system or a raw swap partition.

Each swap area consists of a series of 4-KB page slots, which are used to hold swapped

pages. Associated with each swap area is a swap map— an array of integer counters, each

corresponding to a page slot in the swap area.

 If the value of a counter is 0, the corresponding page slot is available. Values greater than

0 indicate that the page slot is occupied by a swapped page. The value of the counter

indicates the number of mappings to the swapped page; for example, a value of 3

indicates that the swapped page is mapped to three different processes.

Operating Systems 22AI303

23 Dept. of CSE (AIML), MCE, Hassan

PROTECTION

Goals of Protection

 Protection is a mechanism for controlling the access of programs, processes, or users to

the resources defined by a computer system. Protection ensures that only processes that

have gained proper authorization from the operating system can operate on the files,

memory segments, CPU, and other resources of a system.

 Protection is required to prevent mischievous, intentional violation of an access

restriction by a user.

Principles of Protection

 A key, time-tested guiding principle for protection is the ‘principle of least privilege’. It

dictates that programs, users, and even systems be given just enough privileges to

perform their tasks.

 An operating system provides mechanisms to enable privileges when they are needed and

to disable them when they are not needed.

Domain of Protection

 A computer system is a collection of processes and objects. Objects are both hardware

objects (such as the CPU, memory segments, printers, disks, and tape drives) and

software objects (such as files, programs, and semaphores). Each object (resource) has a

unique name that differentiates it from all other objects in the system.

 The operations that are possible may depend on the object. For example, a CPU can only

be executed on. Memory segments can be read and written, whereas a CD-ROM or

DVD-ROM can only be read. Tape drives can be read, written, and rewound. Data files

can be created, opened, read, written, closed, and deleted; program files can be read,

written, executed, and deleted.

 A process should be allowed to access only those resources for which it has authorization

and currently requires to complete process.

Operating Systems 22AI303

24 Dept. of CSE (AIML), MCE, Hassan

Domain Structure

 A domain is a set of objects and types of access to these objects. Each domain is an

ordered pair of <object-name, rights-set>.

 Example, if domain D has the access right <file F,{read,write}>, then all process

executing in domain D can both read and write file F, and cannot perform any other

operation on that object.

 Domains do not need to be disjoint; they may share access rights. For example, in below

figure, we have three domains: D1 D2, and D3. The access right < O4, (print}> is shared

by D2 and D3,it implies that a process executing in either of these two domains can print

object O4.

 A domain can be realized in different ways, it can be a user, process or a procedure. ie.

each user as a domain, each process as a domain or each procedure as a domain.

Access Matrix

 Our model of protection can be viewed as a matrix, called an access matrix. It is a general

model of protection that provides a mechanism for protection without imposing a

particular protection policy.

 The rows of the access matrix represent domains, and the columns represent objects.

 Each entry in the matrix consists of a set of access rights.

 The entry access (i,j) defines the set of operations that a process executing in domain Di

can invoke on object Oj.

Operating Systems 22AI303

25 Dept. of CSE (AIML), MCE, Hassan

 In the above diagram, there are four domains and four objects—three files (F1, F2, F3)

and one printer. A process executing in domain D1 can read files F1 and F3. A process

executing in domain D4 has the same privileges as one executing in domain D1; but in

addition, it can also write onto files F1 and F3.

 When a user creates a new object Oj, the column Oj is added to the access matrix with the

appropriate initialization entries, as dictated by the creator.

The process executing in one domain and be switched to another domain. When we switch a

process from one domain to another, we are executing an operation (switch) on an object (the

domain).

Domain switching from domain Di to domain Dj is allowed if and only if the access right switch

access(i,j). Thus, in the given figure, a process executing in domain D2 can switch to domain D3

or to domain D4. A process in domain D4 can switch to D1, and one in domain D1 can switch to

domain D2.

Allowing controlled change in the contents of the access-matrix entries requires three additional

operations: copy, owner, and control.

Operating Systems 22AI303

26 Dept. of CSE (AIML), MCE, Hassan

The ability to copy an access right from one domain (or row) of the access matrix to another is

denoted by an asterisk (*) appended to the access right. The copy right allows the copying of the

access right only within the column for which the right is defined. In the below figure, a process

executing in domain D2 can copy the read operation into any entry associated with file F2.

Hence, the access matrix of figure (a) can be modified to the access matrix shown in figure (b).

This scheme has two variants:

1. A right is copied from access(i,j) to access(k,j); it is then removed from access(i,j). This

action is a transfer of a right, rather than a copy.

2. Propagation of the copy right- limited copy. Here, when the right R* is copied from

access(i,j) to access(k,j), only the right R (not R*) is created. A process executing in

domain Dk cannot further copy the right R.

We also need a mechanism to allow addition of new rights and removal of some rights. The

owner right controls these operations. If access(i,j) includes the owner right, then a process

executing in domain Di, can add and remove any right in any entry in column j.

Operating Systems 22AI303

27 Dept. of CSE (AIML), MCE, Hassan

For example, in below figure (a), domain D1 is the owner of F1, and thus can add and delete

any valid right in column F1. Similarly, domain D2 is the owner of F2 and F3 and thus can add

and remove any valid right within these two columns. Thus, the access matrix of figure(a) can

be modified to the access matrix shown in figure(b) as follows.

A mechanism is also needed to change the entries in a row. If access (i,j) includes the control

right, then a process executing in domain Di, can remove any access right from row j. For

example, in figure, we include the control right in access (D3, D4). Then, a process executing in

domain D3 can modify domain D4.

Operating Systems 22AI303

28 Dept. of CSE (AIML), MCE, Hassan

Implementation of Access Matrix

Different methods of implementing the access matrix (which is sparse)

 Global Table

 Access Lists for Objects

 Capability Lists for Domains

 Lock-Key Mechanism

1) Global Table

 This is the simplest implementation of access matrix.

 A set of ordered triples <domain, object, rights-set> is maintained in a file. Whenever an

operation M is executed on an object Oj, within domain Di, the table is searched for a

triple <Di, Oj, Rk>. If this triple is found, the operation is allowed to continue; otherwise,

an exception (or error) condition is raised.

Drawbacks -

The table is usually large and thus cannot be kept in main memory. Additional I/O is needed.

2) Access Lists for Objects

 Each column in the access matrix can be implemented as an access list for one object.

The empty entries are discarded. The resulting list for each object consists of ordered

pairs <domain, rights-set>.

 It defines all domains access right for that object. When an operation M is executed on

object Oj in Di, search the access list for object Oj, look for an entry <Di, RK > with M ϵ

Rk. If the entry is found, we allow the operation; if it is not, we check the default set. If

M is in the default set, we allow the access. Otherwise, access is denied, and an exception

condition occurs. For efficiency, we may check the default set first and then search the

access list.

3) Capability Lists for Domains

 A capability list for a domain is a list of objects together with the operations allowed on

those objects. An object is often represented by its name or address, called a capability.

Operating Systems 22AI303

29 Dept. of CSE (AIML), MCE, Hassan

 To execute operation M on object Oj, the process executes the operation M, specifying

the capability for object Oj as a parameter. Simple possession of the capability means that

access is allowed.

Capabilities are distinguished from other data in one of two ways:

1. Each object has a tag to denote its type either as a capability or as accessible data.

2. The address space associated with a program can be split into two parts. One part is

accessible to the program and contains the program's normal data and instructions. The

other part, containing the capability list, is accessible only by the operating system.

4) A Lock-Key Mechanism

 The lock-key scheme is a compromise between access lists and capability lists.

 Each object has a list of unique bit patterns, called locks. Each domain has a list of

unique bit patterns, called keys.

 A process executing in a domain can access an object only if that domain has a key that

matches one of the locks of the object.

