Digital trainer Kit Introduction link: https://www.youtube.com/watch?v=cUdKSQSxVl8

Experiment 1

In a battery powered computer, the diskette driver motor 1 should be ON iff

- There is a diskette in the drive
- The diskette drive door is closed
- Diskette drive motor 2 is not ON
- The battery low signal is not present and
- The computer has started a read operation, or the computer has started a write operation

Design a circuit using basic gates.

Aim: Realization of any given circuit using basic gates only.

Components Required for the conduction of the experiment:

- Digital trainer kit.
- IC 74LS32 (2 input OR gate)
- IC 74LS08 (2 input AND gate)
- IC 74LS04 (NOT gate)
- Patch cards

Procedure:

- 1. Design the circuit and plot the truth table for given expression and also for solved expression and verify.
- 2. Check the all required gates whether it is working.
- 3. Label with the pin numbers for the circuit, referring IC diagram.
- 4. Connection to be done as per the circuit.
- 5. For each entry in truth table cross verify it.

Designing of circuit

Consider variables for:

- There is a diskette in the drive: **A**
- The diskette drive door is Open: **B**
- Diskette drive motor 2 is ON: C
- The battery low signal is present: **D**
- The computer has started a read operation: **R**
- The computer has started a write operation: **W**

Output expression: A B' C' D' (R + W)

Truth Table:

- Output should be high only when

A	В	C	D	R	W	Y
1	0	0	0	1	0	1
1	0	0	0	0	1	1
1	0	0	0	1	1	1

Circuit:

Result: The given expression is verified with the help of truth table.

Experiment 1 URL: https://youtu.be/AsgpSUbaKXk

You will gain weight if you eat too much or you do not exercise enough and your metabolism rate is too low. Design a system such that it alarms you when you gain weight using NAND gates.

Aim: Realization of any given circuit using NAND gates only.

Components Required for the conduction of the experiment:

- Digital trainer kit.
- IC 7400 (2 input NAND gate)
- IC 7410 (3 input NAND gate)
- Patch cards

Procedure:

- 1. Design the circuit and plot the truth table for given expression and also for solved expression and verify.
- 2. Check the all required gates whether it is working.
- 3. Label with the pin numbers for the circuit, referring IC diagram.
- 4. Connection to be done as per the circuit.
- 5. For each entries in truth table cross verify it.

Designing of circuit

Consider variables for:

Eat: XExercise: YMetabolism: Z

Truth Table:

X	Y	Z	OUTPUT
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Karnaugh Map simplification

X\YZ	Y'Z'	Y'Z	YZ	YZ'	
X'	1	1	0	1	
X	1	1	1	1	

Output Expression: X + Y' + Z'

Using only NAND gates: ((X + Y' + Z')')'= (X'.Y.Z)'

Circuit:

Result:

The given expression is verified with the help of truth table.

Experiment 2 URL: https://youtu.be/b38JMmdFMcI

The circuit breaker will trip iff

- The hair drier is turned ON
- The microwave oven is used
- All the lights in the room are ON or
- There is a short circuit in any appliance

Solve the above issue using relevant MUX.

Aim: Realization of a given circuit using a 8:1 Multiplexer.

Components Required for the conduction of the experiment:

- Digital trainer kit.
- IC 74LS151 (8:1 Multiplexer)
- Patch cards

Pin Diagram: 74151

Procedure:

- 1. Design the circuit and plot the truth table for given expression and also for solved expression and verify.
- 2. Check the all required gates whether it is working.
- 3. Label with the pin numbers for the circuit, referring IC diagram.
- 4. Connection to be done as per the circuit.
- 5. For each entries in truth table cross verify it.

	. 1		7 7	7
Tru	th	•	nh	10
1 I U	uii		uv	ıc

A	В	С	D	Output
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

K – map Simplification

Result:

The given expression is verified with the help of truth table.

Experiment 3 URL: https://youtu.be/ytqBeBsHuzI

In an automated house, two lamps L1 and L2 are controlled by 3 switches: A, B, C. Any one of the lamps should be ON, following the below conditions

- L1 is ON if switch A and B are open but not C
- L1 is ON if switch B and C are open but not A
- L2 is ON if only switch C is open
- L2 is ON if only switch B is open
- L2 is ON if switch A or C is open, but not B

Design a circuit to make the lamp ON using decoder

Aim: Realization of a given circuit using a decoder.

Components Required for the conduction of the experiment:

- Digital trainer kit.
- IC 74LS138 (3:8 Decoder)
- IC 74LS32 (2 input OR gate)
- IC 74LS04(NOT gate)
- Patch cards

Pin Diagram 74LS138

Procedure:

- 1. Design the circuit and plot the truth table for given expression and also for solved expression and verify.
- 2. Check the all required gates whether it is working.
- 3. Label with the pin numbers for the circuit, referring IC diagram.
- 4. Connection to be done as per the circuit.
- 5. For each entries in truth table cross verify it.

Truth Table:

A	В	C	L1	L2
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	1
1	1	0	1	0
1	1	1	0	0

Circuit Diagram:

Result:

The given expression is verified with the help of truth table.

Experiment 4 URL: https://youtu.be/FhLRjJ0YbNY

Assume you are generating and transmitting binary data from one place to another. Check whether the sent data is transmitted properly.

Aim: Realization of parity generator and checker.

Components Required for the conduction of the experiment:

- Digital trainer kit.
- IC 74LS86 (XOR)
- IC 74LS04 (NOT)
- Patch cards

Procedure:

- 1. Design the circuit and plot the truth table for given expression and for solved expression and verify.
- 2. Check the all required gates whether it is working.
- 3. Label with the pin numbers for the circuit, referring IC diagram.
- 4. Connection to be done as per the circuit.
- 5. For each entries in truth table cross verify it.

Truth table for ODD parity generator

X2	X1	X0	<i>Y3</i>	Y2	<i>Y1</i>	<i>Y0</i>
0	0	0	1	0	0	0
0	0	1	0	0	0	1
0	1	0	0	0	1	0
0	1	1	1	0	1	1
1	0	0	0	1	0	0
1	0	1	1	1	0	1
1	1	0	1	1	1	0
1	1	1	0	1	1	1

Pin Diagram of 7486

Circuit Diagram:

Odd Parity Checker

Result:

The given expression is verified with the help of truth table.

Experiment URL: https://youtu.be/t-q3BRSNG_A

Assume you need to send a secret message consisting of numbers from 1 to 9 and letters from A to F. Secret message is encoded using excess 3 code. Design a circuit using ADDER IC to send a secret message to your friend.

Aim: Realization of Excess 3 to BCD and vice-versa using adder.

Components Required for the conduction of the experiment:

- Digital trainer kit.
- IC 74LS83(4 bit Adder IC)
- IC 74LS86 (XOR)
- Patch cards

Procedure:

Case 1: BCD to Excess-3 code converter

- Check all the pins by connecting them and testing it with their respective truth tables.
- Label the pin diagram by referring the circuit diagram for the IC pins.
- Connect the IC's according to the pin diagram.
- Make Cin as 0 and bit B=3 i.e.B3, B2, B1, B0 = 0.0.1.1.
- For each entry in the truth table, verify the values corresponding to it.

Case 2: Excess-3 to BCD code converter

- Check all the pins by connecting them and testing it with their respective truth tables.
- Label the pin diagram by referring the circuit diagram for the IC pins.
- Connect the IC's according to the pin diagram.
- Make Cin as 1 and bit B=3 i.e. B3, B2, B1, B0 = 0011.
- For each entry in the truth table, verify the values corresponding to it.

Truth Table

BCD to Excess – 3:

Cin = 0, B = 3 i.e. $B_3 B_2 B_1 B_0 = 1 1 0 1 (2's complement of 0 0 1 1)$

	INP	UT		OUTPUT				
A3	A2	A1	A0	S3	S2	S1	S0	
0	0	0	0	0	0	1	1	
0	0	0	1	0	1	0	0	
0	0	1	0	0	1	0	1	
0	0	1	1	0	1	1	0	
0	1	0	0	0	1	1	1	
0	1	0	1	1	0	0	0	
0	1	1	0	1	0	0	1	
0	1	1	1	1	0	1	0	
1	0	0	0	1	0	1	1	
1	0	0	1	1	1	0	0	

Excess – 3 to BCD:

 $C_{in} = 1$, B = 3 i.e. $B_3 B_2 B_1 B_0 = 0 0 1 1$

	INP	PUT		OUTPUT				
A3	A2	A1	A0	S3	S2	S1	S0	
0	0	1	1	0	0	0	0	
0	1	0	0	0	0	0	1	
0	1	0	1	0	0	1	0	
0	1	1	0	0	0	1	1	
0	1	1	1	0	1	0	0	
1	0	0	0	0	1	0	1	
1	0	0	1	0	1	1	0	
1	0	1	0	0	1	1	1	
1	0	1	1	1	0	0	0	
1	1	0	0	1	0	0	1	

Circuit Diagram:

Result:

The truth table is verified.

https://youtu.be/CdJ0mJkbKRU

Consider a computer operator who needs to generate a sequence 1011 continuously which is transmitted across the network. Design a circuit to implement this job.

Aim: Realization of a shift register.

Components Required for the conduction of the experiment:

- Digital trainer kit.
- IC 7474 (D Flip Flops)
- Patch cards

Pin Diagram of D Flip-Flop

Procedure:

- 1. Design the circuit and plot the truth table for given expression and also for solved expression and verify.
- 2. Check the all required gates whether it is working.
- 3. Label with the pin numbers for the circuit, referring IC diagram.
- 4. Connection to be done as per the circuit.
- 5. For each entry in truth table cross verify it.

Truth Table:

Clock	Serial input	\mathbf{Q}_0	Q_1	\mathbf{Q}_2	\mathbf{Q}_3
0	1	0	0	0	0
1	0	^ 1 ,	^ 0	, 0/	0
2	1	• 0	1	0	^ 0
3	1	1	0	1	•0
4		1	1	0	1

Circuit Diagram:

Result:

The given expression is verified with the help of truth table.

URL: https://youtu.be/ouv4Y6ZwKR8

Consider a scenario where in you want to take print out of few selected random pages in sequence numbered from 0 to 5. Design a circuit to achieve this task using J-K Flipflops.

Aim: Realization of a counting sequence using JK flipflops

Components Required for the conduction of the experiment:

- Digital trainer kit.
- IC 74LS76 (JK Flipflop)
- IC 74LS08 (AND Gate)
- Patch cards

Procedure:

- 1. Design the circuit and plot the truth table for given expression and also for solved expression and verify.
- 2. Check the all required gates whether it is working.
- 3. Label with the pin numbers for the circuit, referring IC diagram.
- 4. Connection to be done as per the circuit.
- 5. For each entry in truth table cross verify it.

Designing of circuit

J - K flip – flop excitation table:

Present state	Next state	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

State Transition Diagram:

Cn	B _n	A _n	C_{n+1}	B_{n+1}	A_{n+1}	$\mathbf{J}_{\mathbf{C}}$	K _C	J_{B}	K _B	J_A	KA
0	0	0	0	0	1	0	X	0	X	1	X
0	0	1	0	1	0	0	X	1	X	X	1
0	1	0	0	1	1	0	X	X	0	1	X
0	1	1	1	0	0	1	X	X	1	X	1
1	0	0	1	0	1	X	0	0	X	1	X
1	0	1	0	0	0	X	1	0	X	X	1

BA C	B'A'	B'A	ВА	BA'
C'	0	0	1	0
С	Х	Х	Х	Х

BA C	B'A'	B'A	ВА	BA'
C'	Х	Х	Х	Х
С	0	1	Х	Х

 $J_C=BA$

$K_B=A$

C BA	B'A'	B'A	ВА	BA'
C'	0	1	X	Х
С	0	0	X	Х

BA C	B'A'	B'A	ВА	BA'
C'	X	X	1	0
С	Х	Х	Х	Х

 $J_B=C'A$

T Z	- A
IX B=	ΞA

BA C	B'A'	B'A	ВА	BA'
C'	1	Х	Х	1
С	1	Х	Х	X

BA C	B'A'	B'A	ВА	BA'
C'	X	1	1	X
С	Х	1	Х	х

 $J_A=1$

 $K_A=1$

Circuit:

Result:

The given expression is verified with the help of truth table.

https://youtu.be/bLhKrLdpkBY