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PROCESS MANAGEMENT 

 

Process Scheduling 

Basic Concepts 

 In a single-processor system, 

 Only one process may run at a time. 

 Other processes must wait until the CPU is rescheduled. 

 Objective of multiprogramming: 

 To have some process running at all times, in order to maximize CPU 

utilization. 

 

CPU-I/0 Burst Cycle 

 

Alternating sequence of CPU and I/O bursts 

 

 Process execution consists of a cycle of 

 CPU execution and 

 I/O wait 

 Process execution begins with a CPU burst, followed by an I/O burst, then another 

CPU burst, etc… 
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 Finally, a CPU burst ends with a request to terminate execution. 

 An I/O-bound program typically has many short CPU bursts. 

 A CPU-bound program might have a few long CPU bursts. 

 

Histogram of CPU-burst durations 

 

CPU Scheduler 

 This scheduler 

 selects a waiting-process from the ready-queue and 

 allocates CPU to the waiting-process. 

 The ready-queue could be a FIFO, priority queue, tree and list. 

 The records in the queues are generally process control blocks (PCBs) of the processes. 

 

CPU Scheduling 

Four situations under which CPU scheduling decisions take place: 

1. When a process switches from the running state to the waiting state.  

For ex; I/O request. 

2. When a process switches from the running state to the ready state.  

For ex: when an interrupt occurs. 

3. When a process switches from the waiting state to the ready state.  

For ex: completion of I/O. 

4. When a process terminates. 

Scheduling under 1 and 4 is non- preemptive. Scheduling under 2 and 3 is preemptive. 
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Non Preemptive Scheduling 

 Once the CPU has been allocated to a process, the process keeps the CPU until it releases 

the CPU either 

 by terminating or 

 by  switching to the waiting state. 

Preemptive Scheduling 

 This is driven by the idea of prioritized computation. 

 Processes that are runnable may be temporarily suspended 

Disadvantages: 

1. Incurs a cost associated with access to shared-data. 

2. Affects the design of the OS kernel. 

 

Dispatcher 

 It gives control of the CPU to the process selected by the short-term scheduler. 

 The function involves: Switching context 

1. Switching to user mode & 

2. Jumping to the proper location in the user program to restart that program 

 It should be as fast as possible, since it is invoked during every process switch. 

 Dispatch latency means the time taken by the dispatcher to 

 stop one process and 

 start another running. 

 

Scheduling Criteria 

In choosing which algorithm to use in a particular situation, depends upon the properties of the 

various algorithms. Many criteria have been suggested for comparing CPU- scheduling 

algorithms. The criteria include the following: 

1. CPU utilization: We want to keep the CPU as busy as possible. Conceptually, CPU 

utilization can range from 0 to 100 percent. In a real system, it should range from 40 

percent (for a lightly loaded system) to 90 percent (for a heavily used system). 

2. Throughput: If the CPU is busy executing processes, then work is being done. One 
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measure of work is the number of processes that are completed per time unit, called 

throughput. For long processes, this rate may be one process per hour; for short 

transactions, it may be ten processes per second. 

3. Turnaround time: This is the important criterion which tells how long it takes to 

execute that process. The interval from the time of submission of a process to the time of 

completion is the turnaround time. Turnaround time is the sum of the periods spent 

waiting to get into memory, waiting in the ready queue, executing on the CPU, and doing 

I/0. 

4. Waiting time: The CPU-scheduling algorithm does not affect the amount of time during 

which a process executes or does I/0, it affects only the amount of time that a process 

spends waiting in the ready queue. Waiting time is the sum of the periods spent waiting 

in the ready queue. 

5. Response time: In an interactive system, turnaround time may not be the best criterion. 

Often, a process can produce some output fairly early and can continue computing new 

results while previous results are being output to the user. Thus, another measure is the 

time from the submission of a request until the first response is produced. This measure, 

called response time, is the time it takes to start responding, not the time it takes to output 

the response. The turnaround time is generally limited by the speed of the output device. 

 

SCHEDULING ALGORITHMS 

 CPU scheduling deals with the problem of deciding which of the processes in the 

ready- queue is to be allocated the CPU. 

 Following are some scheduling algorithms: 

1. FCFS scheduling (First Come First Served) 

2. Round Robin scheduling 

3. SJF scheduling (Shortest Job First) 

4. SRT scheduling 

5. Priority scheduling 

6. Multilevel Queue scheduling and 

7. Multilevel Feedback Queue scheduling 
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1) FCFS Scheduling 

 The process that requests the CPU first is allocated the CPU first. 

 The implementation is easily done using a FIFO queue. 

 Procedure: 

 When a process enters the ready-queue, its PCB is linked onto the tail of the 

queue. 

 When the CPU is free, the CPU is allocated to the process at the queue’s head. 

 The running process is then removed from the queue. 

Advantage: 

 Code is simple to write & understand. 

Disadvantages: 

 Convoy effect: All other processes wait for one big process to get off the CPU. 

 Non-preemptive (a process keeps the CPU until it releases it). 

 Not good for time-sharing systems. 

 The average waiting time is generally not minimal. 

 

 

 Example: Suppose that the processes arrive in the order P1, P2, P3. 

 The Gantt Chart for the schedule is as follows: 

 
 Waiting time for P1 = 0; P2 = 24; P3 =27 

 Average waiting time: (0 + 24 + 27)/3 = 17ms 

 Suppose that the processes arrive in the order P2, P3, P1. 

 The Gantt chart for the schedule is as follows: 
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 Waiting time for P1 = 6;P2 = 0; P3 =3 

 Average waiting time: (6 + 0 + 3)/3 = 3ms 

 

2) SJF Scheduling 

 The CPU is assigned to the process that has the smallest next CPU burst. 

 If two processes have the same length CPU burst, FCFS scheduling is used to break 

the tie. 

 For long-term scheduling in a batch system, we can use the process time limit 

specified by the user, as the ‘length’ 

 SJF can't be implemented at the level of short-term scheduling, because there is no 

way to know the length of the next CPU burst 

Advantage: 

 The SJF is optimal, i.e. it gives the minimum average waiting time for a given set of 

processes. 

Disadvantage: 

 Determining the length of the next CPU burst. 

 

SJF algorithm may be either 1) non-preemptive or 2) preemptive. 

1. Non preemptive SJF: The current process is allowed to finish its CPU burst. 

2. Preemptive SJF: If the new process has a shorter next CPU burst than what is left of the 

executing process, that process is preempted. It is also known as SRTF scheduling 

(Shortest-Remaining-Time-First). 

 

Example (for non-preemptive SJF): Consider the following set of processes, with the 

length of the CPU-burst time given in milliseconds. 
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 For non-preemptive SJF, the Gantt Chart is as follows: 

 

 Waiting time for P1 = 3; P2 = 16; P3 = 9; 4=0 Average waiting time: (3 + 16 + 9 +  

0)/4= 7 

 

Preemptive SJF/SRTF: Consider the following set of processes, with the length of the CPU- 

burst time given in milli seconds. 

 For preemptive SJF, the Gantt Chart is as follows: 

 

 The average waiting time is ((10 - 1) + (1 - 1) + (17 - 2) + (5 - 3))/4 = 26/4 =6.5 

 

3) Priority Scheduling 

 A priority is associated with each process. 

 The CPU is allocated to the process with the highest priority. 

 Equal-priority processes are scheduled in FCFS order. 

 Priorities can be defined either internally or externally. 

Internally-defined priorities. 

 Use some measurable quantity to compute the priority of a process. 

 For example: time limits, memory requirements, no. of open files 
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Externally-defined priorities. 

 Set by criteria that are external to the OS For example: 

 importance of the process, political factors 

 

Priority scheduling can be either preemptive or non-preemptive. 

Preemptive: The CPU is preempted if the priority of the newly arrived process is 

higher than the priority of the currently running process. 

Non Preemptive: The new process is put at the head of the ready-queue 

 

Advantage: 

 Higher priority processes can be executed first. 

Disadvantage: 

 Indefinite blocking, where low-priority processes are left waiting indefinitely for CPU. 

Solution: Aging is a technique of increasing priority of processes that wait in system for a 

long time. 

 

Example: Consider the following set of processes, assumed to have arrived at time 0, in the 

order PI, P2, ..., P5, with the length of the CPU-burst time given in milliseconds. 

 

 The Gantt chart for the schedule is as follows: 

 

 The average waiting time is 8.2milliseconds. 

 

4) Round Robin Scheduling 

 Designed especially for time sharing systems. 

 It is similar to FCFS scheduling, but with preemption. 
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 A small unit of time is called a time quantum(or timeslice). 

 Time quantum is ranges from 10 to 100ms. 

 The ready-queue is treated as a circular queue. 

 The CPU scheduler 

 goes around the ready-queue and 

 allocates the CPU to each process for a time interval of up to 1 time 

quantum. 

 To implement: The ready-queue is kept as a FIFO queue of processes 

 CPU scheduler 

1. Picks the first process from the ready-queue. 

2. Sets a timer to interrupt after 1 time quantum and 

3. Dispatches the process. 

 One of two things will then happen. 

1. The process may have a CPU burst of less than 1 time quantum. In this case, the 

process itself will release the CPU voluntarily. 

2. If the CPU burst of the currently running process is longer than 1 time quantum, 

the timer will go off and will cause an interrupt to the OS. The process will be put 

at the tail of the ready- queue. 

Advantage: 

 Higher average turnaround than SJF. 

 

Disadvantage: 

 Better response time than SJF. 

 

Example: Consider the following set of processes that arrive at time 0, with the length of the 

CPU-burst time given in milliseconds. 

 

The Gantt chart for the schedule is as follows: 
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The average waiting time is 17/3 = 5.66 milliseconds. 

 

 The RR scheduling algorithm is preemptive. 

No process is allocated the CPU for more than 1 time quantum in a row. If a process CPU 

burst exceeds 1 time quantum, that process is preempted and is put back in the ready-

queue. 

 The performance of algorithm depends heavily on the size of the time quantum. 

1. If time quantum=very large, RR policy is the same as the FCFS policy. 

2. If time quantum=very small, RR approach appears to the users as though each of 

n processes has its own processor running at l/n the speed of the real processor. 

 In software, we need to consider the effect of context switching on the performance of 

RR scheduling 

1. Larger the time quantum for a specific process time, less time is spend on context 

switching. 

2. The smaller the time quantum, more overhead is added for the purpose of context- 

switching. 

 

How a smaller time quantum increases context switches 
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How turnaround time varies with the time quantum 

 

5) Multilevel Queue Scheduling 

 Useful for situations in which processes are easily classified into different groups. 

 For example, a common division is made between 

 foreground (or interactive) processes and 

 background (or batch) processes. 

 The ready-queue is partitioned into several separate queues. 

 

 The processes are permanently assigned to one queue based on some property like 

 memory size 

 process priority or process type. 

 Each queue has its own scheduling algorithm. 

For example, separate queues might be used for foreground and background 

processes. 

 There must be scheduling among the queues, which is commonly implemented as fixed-
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priority preemptive scheduling. 

 For example, the foreground queue may have absolute priority over the 

background queue. 

 Time slice: each queue gets a certain amount of CPU time which it can schedule amongst 

its processes; i.e., 80% to foreground in RR 20% to background in FCFS. 

 

6) Multilevel Feedback Queue Scheduling 

 A process may move between queues 

 The basic idea: Separate processes according to the features of their CPU bursts. 

 For example 

1. If a process uses too much CPU time, it will be moved to a lower-priority queue. 

This scheme leaves I/O-bound and interactive processes in the higher-priority 

queues. 

2. If a process waits too long in a lower-priority queue, it may be moved to a higher-

priority queue. This form of aging prevents starvation. 

 

In general, a multilevel feedback queue scheduler is defined by the following parameters: 

1. The number of queues. 

2. The scheduling algorithm for each queue. 

3. The method used to determine when to upgrade a process to a higher priority queue. 

4. The method used to determine when to demote a process to a lower priority queue. 

5. The method used to determine which queue a process will enter when that process 

needs service. 
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PROCESS SYNCHRONIZATION 

 

The Critical Section Problems 

 Consider a system consisting of n processes {Po, P1 , ... ,Pn-1}. 

 Each process has a segment of code, called a critical section in which the process may be 

changing common variables, updating a table, writing a file, and soon 

 The important feature of the system is that, when one process is executing in its critical 

section, no other process is to be allowed to execute in its critical section. That is, no two 

processes are executing in their critical sections at the same time. 

 The critical-section problem is to design a protocol that the processes can use to 

cooperate. 

 

The general structure of a typical process Pi is shown in below figure. 

 Each process must request permission to enter its critical section. The section of 

code implementing this request is the entry section. 

 The critical section may be followed by an exit section. The remaining code is 

the reminder section. 

 

General structure of a typical process Pi 

 

A solution to the critical-section problem must satisfy the following three requirements: 

1. Mutual exclusion: If process Pi is executing in its critical section, then no other 

processes can be executing in their critical sections. 
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2. Progress: If no process is executing in its critical section and some processes wish to 

enter their critical sections, then only those processes that are not executing in their 

remainder sections can participate in deciding which will enter its critical section next, 

and this selection cannot be postponed indefinitely. 

3. Bounded waiting: There exists a bound, or limit, on the number of times that other 

processes are allowed to enter their critical sections after a process has made a request to 

enter its critical section and before that request is granted. 

 

Peterson's Solution 

 This is a classic software-based solution to the critical-section problem. There are no 

guarantees that Peterson's solution will work correctly on modern computer architectures 

 Peterson's solution provides a good algorithmic description of solving the critical- section 

problem and illustrates some of the complexities involved in designing software that 

addresses the requirements of mutual exclusion, progress, and bounded waiting. 
 

Peterson's solution is restricted to two processes that alternate execution between their 

critical sections and remainder sections. The processes are numbered Po and P1 or Pi and Pj 

where j = 1-i Peterson's solution requires the two processes to share two data items: 

int turn; 

boolean flag[2]; 

 

 turn: The variable turn indicates whose turn it is to enter its critical section. Ex: if 

turn == i, then process Pi is allowed to execute in its critical section 

 flag: The flag array is used to indicate if a process is ready to enter its critical section. 

Ex: if flag [i] is true, this value indicates that Pi is ready to enter its critical section. 

 

1. To enter the critical section, process Pi first sets flag [i] to be true and then sets turn to 

the value j, thereby asserting that if the other process wishes to enter the critical section, it 

can do so. 

2. If both processes try to enter at the same time, turn will be set to both i and j at roughly 

the same time. Only one of these assignments will last, the other will occur but will be 

over written immediately. 
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do { 

flag[i] = TRUE; turn = 

j; 

while (flag[j] && turn == j) 

; // do nothing critical 

section 

flag[i] = FALSE; 

 
remainder section 

 

} while (TRUE); 

3. The eventual value of turn determines which of the two processes is allowed to enter its 

critical section first. 

 

                             The structure of process Pi in Peterson's solution 

 

To prove that solution is correct, then we need to show that 

1. Mutual exclusion is preserved 

2. Progress requirement is satisfied 

3. Bounded-waiting requirement is met 

 

1) To prove Mutual exclusion 

 Each pi enters its critical section only if either flag [j] == false or turn ==i. 

 If both processes can be executing in their critical sections at the same time, then flag[0]== 

flag [1]==true. 

 These two observations imply that Pi and Pj could not have successfully executed their 

while statements at about the same time, since the value of turn can be either 0 or 1 but 

cannot be both. Hence, one of the processes (Pj) must have successfully executed the 

while statement, whereas Pi had to execute at least one additional statement ("turn==j"). 

 However, at that time, flag [j] == true and turn == j, and this condition will persist as long 

as Pi is in its critical section, as a result, mutual exclusion is preserved. 

 

2) To prove Progress and Bounded-waiting 

 A process Pi can be prevented from entering the critical section only if it is stuck in the 



Operating Systems 22AI303 

 

17 Dept. of CSE (AIML), MCE, Hassan 
 

do { 

acquire lock 

critical section 

release lock 

remainder section 

} while (TRUE); 

while loop with the condition flag [j] ==true and turn=== j; this loop is the only one 

possible. 

 If Pj is not ready to enter the critical section, then flag [j] ==false, and Pi can enter its 

critical section. 

 If Pj has set flag [j] = true and is also executing in its while statement, then either 

turn=== i or turn ===j. 

 If turn == i, then Pi will enter the critical section. 

 If turn== j, then Pj will enter the critical section. 

 However, once Pj exits its critical section, it will reset flag [j] = false, allowing Pi to enter 

its critical section. 

 If Pj resets flag [j] to true, it must also set turn to i. 

 Thus, since Pi does not change the value of the variable turn while executing the while 

statement, Pi will enter the critical section (progress) after at most one entry by Pj 

(bounded waiting). 

 

SYNCHRONIZATION HARDWARE 

 The solution to the critical-section problem requires a simple tool-a lock. 

 Race conditions are prevented by requiring that critical regions be protected by locks. 

That is, a process must acquire a lock before entering a critical section and it releases the 

lock when it exits the critical section 

                                Solution to the critical-section problem using locks. 

 The critical-section problem could be solved simply in a uniprocessor environment if 

interrupts are prevented from occurring while a shared variable was being modified. In 

this manner, the current sequence of instructions would be allowed to execute in order 

without preemption. No other instructions would be run, so no unexpected modifications 
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boolean test_and_set(boolean  *target) 

{ 

boolean rv = *target; 

*target = true; 

return rv; 

} 

could be made to the shared variable. 

 But this solution is not as feasible in a multiprocessor environment. Disabling interrupts 

on a multiprocessor can be time consuming, as the message is passed to all the 

processors. This message passing delays entry into each critical section, and system 

efficiency decreases. 

 

test and set( ) and swap( ) instructions 

 Many modern computer systems provide special hardware instructions that allow to 

test and modify the content of a word or to swap the contents of two words 

atomically, that is, as one uninterruptible unit. 

 Special instructions such as test_and_set () and swap() instructions are used to solve 

the critical-section problem. 

 The test_and_set () instruction can be defined as shown in Figure. The important 

characteristic of this instruction is that it is executed atomically. 

 

Definition: 

The definition of the test_and_set () instruction. 

 Thus, if two TestAndSet () instructions are executed simultaneously, they will be 

executed sequentially in some arbitrary order. If the machine supports the TestAndSet () 

instruction, then implementation of mutual exclusion can be done by declaring a Boolean 

variable lock, initialized to false. 
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do { 

while ( test_and_set (&lock )) 

; // do nothing 

// critical section 

lock =false; 

// remainder section 

} while (true); 

do { 

key = TRUE; 

while ( key == TRUE)  

Swap (&lock, &key ); 

 
// critical section 

lock =FALSE; 

// remainder section 

} while (TRUE); 

 

 

 

 

 

 

Mutual-exclusion implementation with test_and_Set () 

 The Swap() instruction, operates on the contents of two words, it is defined as shown 

below 

 

Definition: 

 

The definition of the Swap( ) instruction 

 Swap() it is executed atomically. If the machine supports the Swap() instruction, 

then mutual exclusion can be provided as follows. 

 A global Boolean variable lock is declared and is initialized to false. In addition, 

each process has a local Boolean variable key. The structure of process Pi is shown in 

below. 

Mutual-exclusion implementation with the Swap() instruction 

voidSwap (boolean *a, boolean *b) 

{ 

boolean temp = *a; 

*a = *b; 

*b = temp: 

} 
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 These algorithms satisfy the mutual-exclusion requirement, they do not satisfy the 

bounded- waiting requirement. 

 Below algorithm using the test_and_set () instruction that satisfies all the critical- 

section requirements. The common data structures are 

boolean waiting[n]; 

boolean lock; 

 

These data structures are initialized to false. 

 

 

Bounded-waiting mutual exclusion with test_and_set () 

 

1) To prove the mutual exclusion requirement 

 Note that process Pi can enter its critical section only if either waiting [i] == false or 

key==false. 

 The value of key can become false only if the test_and_set( ) is executed. 

 The first process to execute the test_and_set( ) will find key== false; all others must wait. 

 The variable waiting[i] can become false only if another process leaves its critical 

section; only one waiting[i] is set to false, maintaining the mutual-exclusion requirement. 

do { 

waiting[i] = true;  

key = true; 

while (waiting[i] && key) 

key = test_and_set(&lock); 

waiting[i] = false; 

 
// critical section 

j= (i + 1) % n; 

while ((j != i) && !waiting[j])  

j=(j + 1) % n; 

if (j == i) 

lock = false; 

else 

waiting[j] = false; 

// remainder section 

} while (true); 
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wait (S) { 

while S <= 0 

; // busy wait 

S--; 

} 

signal (S) { 

S++;} 

2) To prove the progress requirement 

Note that, the arguments presented for mutual exclusion also apply here, since a process 

exiting the critical section either sets lock to false or sets waiting[j] to false. Both allow a 

process that is waiting to enter its critical section to proceed. 

 

3) To prove the bounded-waiting requirement 

 Note that, when a process leaves its critical section, it scans the array waiting in the 

cyclic ordering (i + 1, i + 2, ... , n 1, 0, ... , i 1). 

 It designates the first process in this ordering that is in the entry section 

(waiting[j]==true) as the next one to enter the critical section. Any process waiting to 

enter its critical section will thus do so within n - 1 turns. 

 

SEMAPHORE 

 A semaphore is a synchronization tool is used solve various synchronization problem and 

can be implemented efficiently. 

 Semaphores do not require busy waiting. 

 A semaphore S is an integer variable that is accessed only through two standard atomic 

operations: wait () and signal (). The wait () operation was originally termed P and 

signal() was called V. 

 

Definition of wait (): 



Definition of signal (): 



Operating Systems 22AI303 

 

22 Dept. of CSE (AIML), MCE, Hassan 
 

do { 

wait (mutex); 

// Critical Section signal 

(mutex); 

// remainder section 

} while (TRUE); 

 All modifications to the integer value of the semaphore in the wait () and signal() 

operations must be executed indivisibly. That is, when one process modifies the 

semaphore value, no other process can simultaneously modify that same semaphore 

value. 

 

Binary semaphore 

 The value of a binary semaphore can range only between 0 and 1. 

 Binary semaphores are known as mutex locks, as they are locks that provide mutual 

exclusion. Binary semaphores to deal with the critical-section problem for multiple 

processes. Then processes share a semaphore, mutex, initialized to 1. 

Each process Pi is organized as shown in below figure 

Mutual-exclusion implementation with semaphores 

 

Counting semaphore 

 The value of a counting semaphore can range over an unrestricted domain. 

 Counting semaphores can be used to control access to a given resource consisting of a 

finite number of instances. 

 The semaphore is initialized to the number of resources available. Each process that 

wishes to use a resource performs a wait() operation on the semaphore. When a process 

releases a resource, it performs a signal() operation. 

 When the count for the semaphore goes to 0, all resources are being used. After that, 

processes that wish to use a resource will block until the count becomes greater than 0. 

 

Implementation 

 The main disadvantage of the semaphore definition requires busy waiting. 

 While a process is in its critical section, any other process that tries to enter its 
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typedef struct { 

int  value; 

struct  process *list; 

} semaphore; 

critical section must loop continuously in the entry code. 

 This continual looping is clearly a problem in a real multiprogramming system, where 

a single CPU is shared among many processes. 

 Busy waiting wastes CPU cycles that some other process might be able to use 

productively. This type of semaphore is also called a spinlock because the process 

"spins" while waiting for the lock. 

 

Semaphore implementation with no busy waiting 

 The definition of the wait() and signal() semaphore operations is modified. 

 When a process executes the wait () operation and finds that the semaphore value is not 

positive, it must wait. 

 However, rather than engaging in busy waiting, the process can block itself. The block 

operation places a process into a waiting queue associated with the semaphore, and the 

state of the process is switched to the waiting state. Then control is transferred to the CPU 

scheduler, which selects another process to execute. 

 A process that is blocked, waiting on a semaphore S, should be restarted when some other 

process executes a signal() operation. The process is restarted by a wakeup( ) operation, 

which changes the process from the waiting state to the ready state. The process is then 

placed in the ready queue. 

 To implement semaphores under this definition, we define a semaphore as a "C' struct: 

 

 Each semaphore has an integer value and a list of processes list. When a process must 

wait on a semaphore, it is added to the list of processes. A signal() operation removes one 

process from the list of waiting processes and awakens that process. 

 The wait() semaphore operation can now be defined as: 
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signal(semaphore  

*S) { 

S->value++; 

if (S->value <= 0) { 

remove a process P from 

S->list; 

 wakeup(P); 

} 

} 

 

 The signal () semaphore operation can now be defined as: 

 

 The block() operation suspends the process that invokes it. The wakeup(P) operation 

resumes the execution of a blocked process P. These two operations are provided by the 

operating system as basic system calls. 

 In this implementation semaphore values may be negative. If a semaphore value is 

negative, its magnitude is the number of processes waiting on that semaphore. 

 

Deadlocks and Starvation 

 The implementation of a semaphore with a waiting queue may result in a situation where 

two or more processes are waiting indefinitely for an event that can be caused only by 

one of the waiting processes. The event in question is the execution of a signal( ) 

operation. When such a state is reached, these processes are said to be deadlocked. 

 To illustrate this, consider a system consisting of two processes, Po and P1, each 

accessing two semaphores, S and Q, set to the value 1. 

 

 

wait(semaphore *S) { 

S->value--; 

if (S->value < 0) { 

add this process to S->list;  

block(); 

}} 
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Po P1 

wait(S); wait(Q); 

wait(Q); wait(S); 

. . 

. . 

signal(S); signal(Q); 

signal(Q); signal(S); 

 

 Suppose that Po executes wait (S) and then P1 executes wait (Q). When Po executes wait 

(Q), it must wait until P1 executes signal (Q). Similarly, when P1 executes wait (S), it 

must wait until Po executes signal(S). Since these signal() operations cam1ot be 

executed, Po and P1 are deadlocked. 

 Another problem related to deadlocks is indefinite blocking or starvation: A 

situation in which processes wait indefinitely within the semaphore. 

 Indefinite blocking may occur if we remove processes from the list associated with a 

semaphore in LIFO (last-in, first-out) order. 

 

CLASSICAL PROBLEMS OF SYNCHRONIZATION 

 Bounded-Buffer Problem 

 Readers and Writers Problem 

 Dining-Philosophers Problem 

 

1) Bounded-Buffer Problem 

 N buffers, each can hold one item 

 Semaphore mutex initialized to the value 1 

 Semaphore full initialized to the value 0 

 Semaphore empty initialized to the value N. 
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The structure of the producer process 

The structure of the consumer process 

 

2) Readers-Writers Problem 

 A data set is shared among a number of concurrent processes 

 Readers – only read the data set; they do not perform any updates 

 Writers – can both read and write. 

 Problem – allow multiple readers to read at the same time. Only one single writer 

can access the shared data at the same time. 

 Shared Data 

 Dataset 

 Semaphore mutex initialized to 1. 

 Semaphore wrt initialized to1. 

 Integer readcount initialized to 0. 
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The structure of a writer process 

The structure of a reader process 

 

3) Dining-Philosophers Problem 

Consider five philosophers who spend their lives thinking and eating. The philosophers share a 

circular table surrounded by five chairs, each belonging to one philosopher. In the center of the 

table is a bowl of rice, and the table is laid with five single chopsticks. 

A philosopher gets hungry and tries to pick up the two chopsticks that are closest to her (the 

chopsticks that are between her and her left and right neighbors). A philosopher may pick up 

only one chopstick at a time. When a hungry philosopher has both her chopsticks at the same 
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time, she eats without releasing the chopsticks. When she is finished eating, she puts down both 

chopsticks and starts thinking again. 

It is a simple representation of the need to allocate several resources among several processes in 

a deadlock-free and starvation-free manner. 

Solution: One simple solution is to represent each chopstick with a semaphore. A philosopher 

tries to grab a chopstick by executing a wait() operation on that semaphore. She releases her 

chopsticks by executing the signal() operation on the appropriate semaphores. Thus, the shared 

data are 

semaphore chopstick[5]; 

where all the elements of chopstick are initialized to 1. The structure of philosopher is 

shown 

 

Several possible remedies to the deadlock problem are replaced by: 

 Allow at most four philosophers to be sitting simultaneously at the table. 

 Allow a philosopher to pickup her chopsticks only if both chopsticks are available. 

 Use an asymmetric solution—that is, an odd-numbered philosopher picks up first her left 

chopstick and then her right chopstick, whereas an even numbered philosopher picks up 

her right chopstick and then her left chopstick. 

 

Problems with Semaphores 

Correct use of semaphore operations: 

 signal (mutex) …. wait (mutex) : Replace signal with wait and vice-versa 

 wait (mutex) … wait(mutex) 

 Omitting of wait (mutex) or signal (mutex) (or both) 
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Monitor 

 An abstract data type—or ADT—encapsulates data with a set of functions to operate on 

that data that are independent of any specific implementation of the ADT. 

 A monitor type is an ADT that includes a set of programmer defined operations that are 

provided with mutual exclusion within the monitor. The monitor type also declares the 

variables whose values define the state of an instance of that type, along with the bodies 

of functions that operate on those variables. 

 The monitor construct ensures that only one process at a time is active within the monitor. 

 

 To have a powerful Synchronization schemes a condition construct is added to the 

Monitor. So synchronization scheme can be defined with one or more variables of type 

condition Two operations on a condition variable: 

Condition x, y 

 The only operations that can be invoked on a condition variable are wait() and signal(). 

The operation 

x.wait () – a process that invokes the operation is suspended. 

x.signal () – resumes one of processes (if any) that invoked x.wait () 
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Monitor with Condition Variables 

 

Solution to Dining Philosophers 

 Each philosopher I invokes the operations pickup() and putdown() in the following 
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 For each monitor, a semaphore mutex (initialized to 1) is provided. A process must 

execute wait(mutex) before entering the monitor and must execute signal(mutex) after 

leaving the monitor. 

 Since a signaling process must wait until the resumed process either leaves or waits, an 

additional semaphore, next, is introduced, initialized to 0. The signaling processes can 

use next to suspend themselves. An integer variable next_count is also provided to count 

the number of processes suspended on next. Thus, each external function F is replaced by 

 

 For each condition x, we introduce a semaphore x sem and an integer variable x count, 

both initialized to 0. The operation x.wait() can now be implemented as 

 

 The operation x.signal() can be implemented as 

 

Resuming Processes within a Monitor 

If several processes are suspended on condition x, and an x.signal() operation is executed by 

some process, then to determine which of the suspended processes should be resumed next, one 

simple solution is to use a first-come, first-served (FCFS) ordering, so that the process that 

has been waiting the longest is resumed first. For this purpose, the conditional-wait construct 
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can be used. This construct has the form 

x.wait(c); 

where c is an integer expression that is evaluated when the wait() operation is executed. The 

value of c, which is called a priority number, is then stored with the name of the process that is 

suspended. When x.signal() is executed, the process with the smallest priority number is 

resumed next. 

 
 

 The Resource Allocator monitor shown in the above Figure, which controls the 

allocation of a single resource among competing processes. 

 A process that needs to access the resource in question must observe the 

following sequence: 

     R.acquire(t); 

      ..… 

     access the resource; 

      ….. 

     R.release(); 

where,  R is an instance of type Resource Allocator. 
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 The monitor concept cannot guarantee that the preceding access sequence will 

be observed. In particular, the following problems can occur: 

 A process might access a resource without first gaining access permission to 

the resource. 

 A process might never release a resource once it has been granted access to 

the resource. 

 A process might attempt to release a resource that it never requested. 

 A process might request the same resource twice (without first releasing the resource). 

 

 

 

 

 

 


