MALNAD COLLEGE OF ENGINEERING, HASSAN (An Autonomous Institution Affiliated to VTU, Belagavi)

Autonomous Programmes Bachelor of Engineering

Scheme for III - VIII Semesters Academic Year: 2024-25

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Admitted Batch: 2021-25

VISION of the Department

To become a department of excellence in the domain of Electrical and Electronics Engineering producing competent engineers with research acumen having moral and social values.

MISSION of the Department

- Enhance industry and alumni interaction.
- Promote continuous quality up gradation of faculty and technical staff.
- Time to time modernization of departmental infrastructure to provide state of the art laboratories.
- Create research-oriented culture to invoke the desire and ability of lifelong learning among the students for pursuing successful career.
- Create and sustain environment of learning in which students acquire knowledge and learn to apply it professionally with due consideration of social and ethical values.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

Graduates of the program will be able to

1. Design, analyze, operate and maintain equipment related to electrical and electronic industries with continuous integration with core and allied industries.

2. Use state of art laboratories and modern computer based tools to pursue a diverse range of career as engineers and researchers.

3. Bring out innovations to provide best solutions to electrical engineering problems.

4. Fulfill the needs of society in solving technical problems using engineering principles, tools and practices, in an ethical and responsible manner.

PROGRAM OUTCOMES (POs)

Engineering Graduates will be able to:

- 1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

- 9. **Individual and teamwork**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: Develop models, design, analyze and assess the performance of different types of electrical machines, control systems and generation, transmission, distribution, protection mechanisms in power systems.

PSO2: Demonstrate knowledge and hands-on competence in the application of circuit analysis and design, associated software and applications, analog and digital electronics and microcontrollers to build, test, operate and maintain electrical and electronic systems

Assessment	Marks
CIE 1	10
CIE 2	10
CIE 3	10
Activities (Minimum 2)	20
SEE	50
Total	100

Scheme of Evaluation (Theory Courses)

Scheme of Evaluation (Laboratory Courses)

Assessment	Marks
Continuous internal Evaluation in every lab session by the Course coordinator	30
Laboratory CIE conducted by the Course coordinator	20
SEE	50
Total	100

MALNAD COLLEGE OF ENGINEERING, HASSAN

Scheme Structure fo	r B.	E. Program	with	160	credits
---------------------	------	------------	------	------------	---------

		1		
			AICTE	MCE
Sl.No.	Category	Description	Breakup of	Breakup of
			Credits	Credits
1	HSMC	Humanities , Social Sciences and Management courses, UHV	12*	8
2	BS	Basic Science courses	25*	24
3	ES	Engineering Science courses including workshop, drawing, basics of electrical/mechanical/computer etc	24*	20
4	РСС	Professional Core Courses	48*	60
5	PEC	Professional Elective courses relevant to chosen specialization/branch/	18*	16
6	OEC	Open subjects – Electives from other technical, emerging, arts, commerce; Ability Enhancement Courses	18*	9
7	PI	Mini and Major Project work /seminar/ Summer Internship and Research /Industrial Internship	15*	23
8	AUDIT	Mandatory Non-Credit Courses (Environmental Sciences, Induction training, Indian Constitution, Universal Human Values, Kannada)	No credits	-
		160	160	

*Minor variation is allowed as per need of the respective discipline

The duration for courses:

- 1. 4-credits 50 Hrs
- 2. 3-credits 40 Hrs
- 3. 2-credits 25 Hrs
- 4. 1-credit 15 Hrs

	Scheme of Teaching for the 2021-22 Admitted Batch						
	THIRD SEMESTER						
se	~	~ -				Contact	

THIRD SEMESTER					
Course Category	Course Code	Course Title	L-T-P	Credits	Contact Hours
BSC	21MA301	Linear Algebra and Integral Transforms	3-1-0	3	4
PCC	21EE302	Analog and Digital Electronic Circuits	4-0-0	4	4
PCC	21EE303	Transformers & Induction Machines	3-0-0	3	3
PCC	21EE304	Electric Power Generation, Transmission & Distribution	4-0-0	4	4
PCC	21EE305	Electrical and Electronics Measurements	3-0-0	3	3
PCC	21EE306	Transformers & Induction Machines Laboratory	0-0-2	1	2
PCC	21EE307	Analog and Digital Electronics Laboratory	0-0-2	1	2
HSMC	21UHV	Universal Human Values	2-0-0	1	2
BS	21BCM301	Bridge Mathematics-1 (Mandate Audit course for Diploma entry students)	0-0-0	0	3
Total 20 27					
PCC: Professional Core; PI: Mini and Major Project work /seminar/ Summer Internship and Research /Industrial Internship; BS: Basic Sciences; HSMC: Humanities and Social Science, Management Courses, UHV; AE: Ability Enhancement Course					

FOURTH SEMESTER					
Course Category	Course Code	Course Title	L-T-P	Credits	Contact Hours
BSC	21MA401	Statistics and Complex Analysis	2-0-2	3	4
PCC	21EE402	Electrical Network Analysis	3-0-2	4	5
PCC	21EE403	Synchronous and Special Electrical Machines (Laboratory Integrated)	3-0-2	4	5
PCC	21EE404	Microcontrollers (Laboratory Integrated)	3-0-2	4	5
PCC	21EE405	Electric Networks and Measurements Laboratory	0-0-2	1	2
AEC	21BE	Biology for Engineers	2-0-0	1	2
HSMC	21KNS*/ 21KNB*	Samskrutika Kannada/ Balake Kannada (Group A)	2-0-0	1	2
PI	21INT1	Summer Internship –I	0-0-2	1	
BS	21BCM401	Bridge Mathematics-II (Mandate Audit course for Diploma entry students)	0-0-0	0	3
Total 19 28					
PCC: Professional Core; PI: Mini and Major Project work /seminar/ Summer Internship and Research /Industrial Internship; BS: Basic Sciences; HSMC: Humanities and Social Science, Management Courses; UHV, AE: Ability Enhancement Course					

Summer Internship-II: At the end of fourth Semester four weeks Summer Internship shall be carried out – Based On industrial/Govt./NGO/MSME/Rural Internship/Innovation/Entrepreneurship. Credited In fifth Semester. All the students admitted shall have to undergo mandatory internship of 04 weeks during the vacation of IV semesters. A University Viva-Voce examination shall be conducted during V semester and the prescribed credit shall be included in V semester. Internship shall be considered as a head of passing and shall be considered for the award of degree. Those, who do not take up/complete the internship shall be declared fail and shall have to complete during subsequent University examination after satisfying the internship requirement

FIFTH SEMESTER					
Course Category	Course Code	Course Title	L-T-P	Credits	Contact Hours
PCC	21EE501	Linear Control Systems (Integrated Laboratory)	3-0-2	4	5
PCC	21EE502	Power Electronics	4-0-0	4	4
PCC	21EE503	Electromagnetic Fields	4-0-0	4	4
PCC	21EE504	Electrical Machine Design (Integrated Laboratory)	3-0-2	4	5
HSMC	21EE505	Industrial Management and Professional Engineering Practice	4-0-0	4	4
PCC	21EE506	Power Electronics Laboratory	0-0-2	1	2
UHV	21SCR	Social Connect & Responsibility	0-0-2	1	2
HSMC	21CIP	Constitution of India and Professional Ethics	0-2-0	Audit	2
Total 22 28					28
PC: Profess	ional Core; AE:	Ability Enhancement Course; HS: Hu	umanities a	nd Social S	cience

SIXTH SEMESTER					
Course Category	Course Code	Course Title	L-T-P	Credits	Contact Hours
PCC	21EE601	Power System Analysis and Stability	4-0-0	4	4
PCC	21EE602	High Voltage Engineering and Switchgear	4-0-0	4	4
PCC	21EE603	Relay and High Voltage Laboratory	0-0-2	1	2
PI	21EE604	Mini Project	0-0-2	2	4
PEC	21EE61X	Professional Elective Course - I	3-0-0	3	3
PEC	21EE62X	Professional Elective Course - II	3-0-0	3	3
PEC	21SW01	SWAYAM	0-1-0	Audit	
OEC	210EXX6X	Open Elective –I	3-0-0	3	3
AEC	21ASK	Analytical Ability and Soft Skills	0-2-0	1	2
HSMC	21EVS	Environmental Studies		0	2
PI	21INT2	Summer Internship -II	0-0-4	2	4
Total				23	31
PC: Profess	ional Core; AE:	Ability Enhancement Course; HS: Hu	umanities a	nd Social S	cience

Professional Elective Course - I						
21EE611	Testing & commissioning of Electrical equipment	21EE613	Advanced Power Electronics			
21EE612	Special Electrical Machines	21EE614	Operational Amplifiers and Linear ICs			
Professional Elective Course - II						
21EE621	Object Oriented Programming with C++	21EE623	Programmable Logic Controllers			
21EE622	Signals and Systems	21EE624	Electric Vehicle Technologies			
Open Elective - I						
210EEE61	Basic Power Electronics	210EEE62	Alternate Energy Sources			

SEVENTH SEMESTER					
Course Category	Course Code	Course Title	L-T-P	Credits	Contact Hours
IPCC	21EE701	Computer Methods in Power Systems (Integrated Laboratory)	3-0-2	4	5
PCC	21EE702	Modern Control Theory	4-0-0	4	4
PEC	21EE73X	Professional Elective Course - III	3-0-0	3	3
PEC	21EE74X	Professional Elective Course - IV	3-0-0	3	3
PEC	21EE75X	Elective – V (Industry Elective)	0-0-2	1	2
OEC	210EX7X	Open Elective -II	3-0-0	3	3
PI	21PROJ7X	Project Work Phase - I	0-0-4	2	4
AEC	21RIP01	Research Methodology & Intellectual Property rights (Mandatory non- credit)	0-2-0	Audit	2
Total				20	26
AE: Ability	Enhancement Co	ourse; OE: Open Elective			

	Professional Elective Course - III							
21EE731	Digital Signal Processing	21EE733	Electrical Engineering Materials					
21EE732	Introduction to Smart Grid	21EE734	Power System Operation and Control					
Professional Elective Course - IV								
21EE741	Industrial Drives and Applications	21EE743	Flexible AC Transmission Systems					
21EE742	Electrical Power Quality	21EE744	Solar Power Conversion Systems					
Open Elective - II								
210EEE71	Smart Grid Technologies	210EEE72	Utilization of Electric Power					

	EIGHTH SEMESTER													
Course Category	Course Code	Course Title	L-T-P	Credits	Contact Hours									
PI	21PROJ8X	Project Work Phase - II	0-0-8	4	8									
PI	21INT3	Internship (Research / Industry)	0-0-24	12	24									
		Total		16	32									

SEVENTH SEMESTER

Course 7	Title				CO	MPU	FER M	IETH(DDS IN	N POW	ER SYS	STEMS		
Course (Course Code 21EE701 (L-T-P) C (3-0-2) 4 CIE 50 Hours/Week 5 SEE 50 Total Hours 64 (40L+24P)													
CIE				50					Hou	rs/Wee	k		5	
SEE				50					Tot	al Hour	Ś	64 (4	0L+24P	')
Course (involving	Dbjectiv networ	ve: To ks un	design der var	n gener ious fra	alized	compu f refere	uter alg ence.	gorithm	ns for c	ompute	r aided	Power S	ystem A	vnalysis,
Course o	outcome	es: At	the end	I OT COL	irse, st	udent v	vill be	able to):		Ma		Mann	
#				Cot	irse O	utcom	es	-			to	POs	Mapp PS	Os
$\begin{array}{c} 1 \\ trans \end{array}$	n the inc	on.	e matri	ces, net	twork r	natrice	s by sn	ngular	and noi	1-singula	ar	2	1	
2 Expla	ain the v lems.	arious	s metho	ds of Ic	bad flow	v proce	dures f	or vario	ous pov	ver syste	m	1	1	
3 Solve	e load flo	ow nui	nerical	problem	is using	g variou	is metho	ods.				2	1	
$\begin{array}{c c} 4 \\ \hline 4 \\ are b \end{array}$	elop con based on	npute:	r aided empora	algorith ry and	nms for moder	r variou n indus	is pow stry-ba	er syste sed me	em prot thods.	olems th	at	5	2	
5			1	1	Co	ourse A	Articul	ation I	Matrix		[
POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1 3 3 CO2 2 3														
CO2 2 3														
CO3 2 3												3		
CO4 2 2											2			
					Μ	IODUI	LE-1						1	0 Hrs
Network	Topol	ogy a	nd Net	work	Matri	ces: (a) Intro	duction	n, Elen	nentary	graph t	heory, B	asic def	initions,
Oriented (b) Incide	graph, T	Free, (Co-tree	, Basic	cut set	s, Basi	c loops	, Rank	of a m	atrix, Si	ngular a	and nonsi	ingular r	natrices,
Basic loo	n and A	ugme	nted lo	op mat	rices. l	Relatio	n betw	reen dif	fferent	matrices	s (c) Pri	mitive n	etwork r	natrices.
Impedance	ce form	and A	dmitta	nce for	m, illu	strative	e exam	ples.						,
					Ν	IODUI	L E-2						1	0 Hrs
Formatio	on of N	etwo	rk Ma	trices:	(a) Fo	ormatic	on of n	etwork	k matri	ces by s	singular	r transfo	rmations	in bus,
branch a	nd loop	o frar	nes of	refere	nce (Y	BUS,	Y _{BR} an	id Z _{LO}	op), an	d Illust	rative	example	s. Form	ation of
matrices	ected n	etwor the h	K matr ranch a	ices by	non-s n fram	singulation of the second s	r trans eferen	formatice and	10ns us hence	arriving	mented	intercol	of form	network
network i	matrices	s in bu	is. bran	ch and	loop fi	rames (of refer	ence. i	llustrat	ive exar	nples. (b) Node	Elimina	ation by
Matrix A	lgebra	: Deri	vation	of gene	eralized	d algor	ithms f	for a gi	ven ele	ectric po	wer sys	tem for 1	node elii	nination
by matrix	k manip	oulatio	on of p	erform	ance e	quation	ns, noc	le elim	ninatior	n by cor	nsiderin	g; (i) th	e eligibl	e nodes
simultane	eously a	nd (ii) one n	ode at	a time	, Illusti	rative e	exampl	les. (c)	Algorit	hms fo	r forma	tion of 1	network
matrices	: Introd	uctioi	n, Parti	al netw	vork, P	ertorm	ance e	equation	n, algo	Tithms 1	or forn	nation of I	bus im	pedance
examples	BUS DY	Dunc	ing alg	gorium	is, Uei		ases 0	i Auui		Dianci	i, Auur		_111K, 111	1511 411 VC
F	MODULE-3 10 Hrs													
Review o	f Soluti	on of	equatio	ns: Inti	roducti	on, Me	ethods	of solv	ing line	ear, Non	linear a	nd differ	ential ec	luations,
iterative	iterative methods, Generalized algorithms for solution of linear equations by Gauss elimination and LU													
nethods	ractorization methods, Algorithms for solution of nonlinear equations by Gauss-Siedel and Newton-Raphson methods, examples, Load Flow Studies: Introduction, Power flow equations, Classification of buses, Operating													
constrain	constraints. Data for load flow importance of slack bus and YBUS in load flow analysis. Gauss-Siedel Method													
algorithm	and flo	ow ch	art for	PQ and	l PV bi	uses, a	ccelera	tion of	conve	rgence.	illustrat	ive exan	ples (ni	umerical
problems	for max	ximur	n of tw	o iterat	ions of	nly).				5			I ()	
					Μ	IODUI	LE-4						1	0 Hrs

NR and FDLF Methods of Load Flow Studies:(a) Newton Raphson Method – Algorithm and flow chart for NR method in polar coordinates, importance of Jacobian matrix, Sparsity considerations, solution procedure for systems involving PQ and PV buses, illustrative examples (numerical problems for one iteration only). (b) Newton's Decoupled method and its advantages, FDLF Analysis: Algorithm and flow chart for Fast Decoupled load flow method, assumptions made, Comparison of Load Flow Methods.

Ioau II	ow method, assumptions made, comparison of Load 110w Methods.	
	Laboratory Component	24 Hrs
1.	Optimal generator scheduling for various power plants (max. four units) without a	and with the
	transmission losses.	
2.	To conduct load flow analysis using Newton Raphson method for at least 3 iterations for	a 3 to 4 Bus
	system (Load flow data to be supplied).	
3.	Load flow analysis of a given power system using Gauss Siedel method for at least 3 itera	ations for a 3
	to 4 Bus system (Load flow data to be supplied).	
4.	To determine fault currents & voltages in power systems at a specified location for SLGF,	DLGF, LLF
	and 3LG Fault, without and with fault impedance.	
5.	Y _{BUS} formation for power systems by the rule of inspection method (without mutual coup	ling).
6.	BUS formation for power systems without & with mutual coupling, by singular transformat	tion method.
7.	ABCD parameters: Formation for symmetric configurations, verification of AD	D-BC=1 and
	determination of efficiency & regulation for short, medium and long transmission lines.	
Text b	oooks:	
1.	Stagg, GW, and EI-Abiad AH, Computer Methods in Power System Analysis M	IcGraw Hill
	International Student Edition. 1988.	
2.	Pai, M. A., Computer Techniques in Power System Analysis, TMH, 2nd Edition, 2006.	
3.	K. Uma Rao, Computer Modeling of Power Systems, Interline publ., Bangalore, 2008.	

Reference Books:

1. K. Uma Rao, Computer Modeling of Power Systems, Interline publ., Bangalore, 2008.

Co	urse Title	Ν	IODERN CONTROL	L THEORY		
Co	urse Code	21EE702		(L-T-P) C	(4-0-0) 4	
CI	E	50		Hours/Week	4	
SE	Ε	50		Total Hours	52	
Co	urse Objective: To de	emonstrate skills to conduct	t state space analysis.			
Co	urse outcomes: At the	e end of course, student wil	l be able to:			
#	Ł	Course Outcomes		Mapping to POs	Mapping to PSOs	
1	Represent a given s state variables and o	ystem using state model by obtain the solution of the sta	choosing appropriate ate equation.	1, 2	1	
2	2 Solve state space n different application	nodels from its classical m	athematical model to	1, 2	1	

 3
 Test controllability and observability of the system and design system using pole placement techniques.
 1, 2, 3
 1

 4
 Analyze the stability of linear systems using Liapunov's criteria.
 1, 2
 1

Course Articulation Matrix

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	1										2	
CO2	2	3	1										2	
CO3	2	3	3										2	
CO4	2	3	1										2	

MODULE-1

13 Hrs

Introduction to State variable analysis: Limitations of classical control theory, Concept of state, State variables, state space model for physical systems – electrical and mechanical systems.

State Space Model: State model of linear systems from differential equations and transfer function, direct (CCF and OCF), series and parallel decomposition.

SLC: State Space model of Electro mechanical system.

MODULE-2

Canonical Models: Similarity transformation of state model, Invariant property, Diagonal canonical model, Jordan canonical model. Transfer function matrix fromstate model.

Time Domain Analysis in State Space: Solution of time invariant state equation, State Transition matrix (STM).

SLC: Properties of State Transition matrix.

MODULE-3

Computation of STM using Power series, Laplace transformation and Canonical transformation method. Controllability and Observability: Concept of controllability and observability, Criterion for controllability and observability - Kalman's test and Gilbert's method. Linear transformation of state model into CCF and OCF.

SLC: Computation of STM using Cayley Hamilton method.

MODULE-4	13 Hrs
Pole placement Techniques: Stability improvements by State feedback, necessary and state stability improvements by State feedback, necessary and state stability improvements by State state states and states are stability improvements by State states are states and states are	sufficien
conditions for arbitrary pole placement, Design of state feedback controllers, Ackerman's	formula
Design of state observers- full order observer.	
Stability Analysis: Concept of stability, Equilibrium points, Liapunov's stability definitions, Sign def	initeness
of scalar functions, Liapunov's function, Liapunov's method for Linear time invariant systems.	
SLC: design of reduced order observer.	
Text books:	

1. K.P. Mohandas, Modern Control Engineering, Sanguine Technical publishers, 2006.

Reference Books:

- 1. M. Gopal, Digital Control & State Variable Methods, 2nd Edition, Tata McGraw Hill, 2003.
- 2. Katsuhiko Ogata, Modern Control Engineering, 4th Edition, Pearson Education.
- 3. Benjamin C Kuo, Automatic Control Engineering, Prentice Hall India, 2002.

13 Hrs

13 Hrs

PROFESSIONAL ELECTIVE COURSE – III

Course	ourse TitleDIGITAL SIGNAL PROCESSINGourse Code21EE731(L-T-P) C(3-0-0) 3Viewer (Weath2													
Course	Code			21E	E731						(L-T-F	P) C	(3-0-	0) 3
CIE					50					Н	ours/W	eek	3	
SEE					50					Т	'otal Ho	ours	40)
Course	Objecti	ive: To	design	and in	npleme	ent digi	tal filte	er for s	ignal p	rocessin	g applic	ations.		
Course	outcom	es: At	the end	l of cou	irse, st	udent v	will be	able to	:					
#				Cou	rse Ou	itcome	s				Maj	pping to POs	Ma to	pping PSOs
1 Tra	nsform	signals	using	discret	e Fouri	er and	Fast F	ourier t	ransfo	rms.		1, 2		2
2 Rea	lize IIR	and F	IR digi	tal syst	ems in	variou	s form	s.				1,2		2
3 Des	ign IIR	filters	as per i	require	d speci	ificatio	ns.				1	, 2, 3		2
4 Des	ign FIR	filters	as per	require	ed spec	ificatio	ons.		.		1	, 2, 3		2
					Co	ourse A	Articul	ation I	Matrix					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	1											2
CO2	1	2	1											2
CO3	1	2	3											2
CO4 1 2 3 2													2	
MODULE-1 10 H											10 Hrs			
Discrete Fourier Transforms: Definitions, Circular shift, Properties of DFTs, Circular convolution,														
Stockhar	m's met	thod, L	inear c	onvolu	tion of	two fi	nite du	ration	sequen	ces, Filt	ering of	long sec	luences.	
SLC: Pr	oofs of	differe	ent Prop	oerties	of DFI	S.								
						MOD	ULE-2							10 Hrs
Fast Fo	urier ti	ransfo	rms alg	gorithr	ns: Int	roduct	ion, de	cimation	on in t	ime algo	orithm,	decimati	on in fr	equency
algorithi	n, decoi	mposit	10n for	'N´ac dia aman	ompos	ite num	iber, co	omputa	tion of	DFIs at	1d IDF I	s. Keali	zation o	of digital
SLC · R	alizatio	uction on of I	R syste	m in C	lis, Kea 'ascade	form		K syste	ins-un		i anu Fa	Tanel 10		
<u>ble</u> i k	Juiizuii		it syste		useuuc		ULE-3							10 Hrs
Realizat	tion of l	FIR sy	stems:	Introdu	uction,	Direct	form,	cascad	e form.	linear p	hase rea	alization	s. Desig	n of IIR
Digital	filters:	Intro	duction	, Тур	es of	filters,	, Anal	og Bu	tterwo	rth and	Cheby	shev fi	lters, fr	requency
transform	nations	•												
SLC: La	attice st	ructure	realiza	tion of	FIR F	ilter.								
	6.5		D' '	1 171	T		$\underline{\text{ULE-4}}$		1		C			10 Hrs
Methods	s of De	signin	g Digit	al Filte	ers, In England	ipulse	Invaria	ant and	I Bilin	ear Trai	nsforma	tions, D	esign o	f digital
Window	ing De	i Chet	f Lines	mers,	Freque	filtor u	ansion	nations	b. Designation	gn or r. 1 Hamm	ing win	dows T	rs: Intro	f Linear
nhase FI	R filter	using	Frequei	nev sar	nnling	technia	ane is	Clangu	iiai ain	1 1 1 1 1 1 1 1 1 1	ing will	iuows. L	esign o	Linear
SLC: D	esign of	² Linea	r phase	FIR fi	lter usi	ng Kai	ser Wi	ndow.						
Text bo	oks:		I			0								
1. J	ohn G.	Proak	is and	Dimit	is G.	Manol	akis, E	Digital	Signal	Process	sing: Pr	inciple,	Algorith	hms and
A	Applications, Fourth Edition, PHI, 2007.													
Referen	Reference Books:													
1. J	1. Johnny R. Johnson, Introduction to Digital Signal Processing, PHI, 2003.													
2. E	\mathbf{D} D ama	nathar	i inair, l	Jigital	Signal	Proces	ssing, f	-111, 20 4h E224	ion S	iTooh D	ublicati	ons 201	1	
з. г Д Д	. Name	or Ka	ni Digi	tal Sig	nal Pr	ocessin	g, roui 10 Sec	and \mathbf{F}_{α}	lition	McGrav	v Hill F	ducation	1. 1 (India)) Private
ч. <i>Г</i> І		12.	, Digi	Dig		00000011	.5, 500		<i>*</i> 111011,	1,100140	, 1111 L	aucunoi	i (muna)	, 1 11 valu
-	, _0.													

Cou	rse Ti	itle					IN	TROD	UCTI	ON TO) SMAI	RT GRI	D			
Cou	rse C	ode			2	1EE7	32					(L-T-P)) C	(3	-0-0)	3
CIE						50					H	ours/We	ek		3	
SEE		1 • 4•		1		<u>50</u>	1 .					otal Hou		1.1	40	<u> </u>
Smar	rse O rt Gri	d Impl	ve: 10 ementa	demon tion.	nstrate	the mo	oderniz		of Elec	strical	Power S	Systems	and to	addre	ess Iss	ues in
Cou	rse oi	itcome	es: At t	the end	of cou	rse, stu	ident v	vill be a	able to:				Monr	ing	Man	ning
#	T .		• • • •		(Course	Outco	omes					to P	Ds	to P	SOs
1 2	Inte	rpret d	arious	t comp avenue	es of S	of sma mart g	rid in	contex	t to rea	al time	power	system	1		1	<u> </u>
3	Oper Exp	lain ar	Id anal	yze ope	eration	al featu	ires of	Smart	grid.				1		1	[
4	Ass	ess ro	le of S	Smart	grid to	addre	ss rea	l life o	challen	ges in	power	system	1,6	j	1	
Course Articulation Matrix																
	POs	DO1	DOD	DO2		DO5	DOG	DO7	DOQ	DOO	DO10	DO11	DO12			202
COs FOT FOT <td>302</td>														302		
CO1 3 CO2 3																
CO3 3 3																
CO4 3 2 3																
							MOD	ULE-1							1	0 Hrs
Intro in Ind Over betw Infor com SLC	oducti dian F view een co rmation nunic C: Sm	ion to solver solver solver solver solven the convention on and ation converting art grice solver so	Smart sector, (techno onal & d com hannels l initiat	Grid: 1 Concep ologies smart munica s. Layer ives in	Evolution of of Sn require grid. Indian te India	on of E nart Gr d for t echnolo nitectur	idectric id, Wh the Sm ogies: re and p	Grid, H y imple art Gri Data c protoco	Evolutio ement t d, Opp ommur ls-ISO/	on of In he Sma ortunit nication OSI mo	idian Na art Grid ies & B i- Introd odel and	tional G now? Ea arriers c luction, TCP/IP	rid, Reg rly Sma of Smar switchir	ulator rt Grid Grid	y auth d initi l, Diff hniqu	norities latives, ference es and
							MOD	ULE-2	2						1	0 Hrs
Sens mete Com of D: SLO	ing, I ring, o putati SI, Ha C: Cyl	Measu overvie on, Inp urdware ber Sec	rement ew of th out/outp e suppo curity fo	t, Cont he hard out, Con rt to D or Sman	t rol an ware u mmunic SI imple t Grid	d Aute sed, Si cation. ementa	omatio gnal ac Demar tions.	on Tecl equisitiond-side	hnolog on, Sig integra	ies: Sn nal con tion, So	nart met ditionin ervices	tering: k g, Analo provided	Key con ogue to o by DSI	ipone ligital , Imp	nts of conv lemen	smart ersion, tations
							MOD	ULE-3	6						1	0 Hrs
Distr Volta syste Distr mode SLC	Distribution automation equipment: Introduction, Substation automation equipment, Current transformers, Voltage transformers, Intelligent electronic devices, Bay controller, Remote terminal units. Faults in the distribution system: Components for fault isolation and restoration, Fault location, isolation and restoration, Voltage regulation. Distribution Management System: Data sources and associated external systems-structure and main components, modelling and analysis tools, Applications.															
		-					MOD	ULE-4	Ļ						1	0 Hrs
Tran mana contr EV b SLC Text	Transmission system operation: Introduction, Data sources, IEDs and SCADA, Phasor measurement units, Energy management systems, Wide area applications, On-line transient stability controller, Pole-slipping preventive controller. Energy storage- Introduction, various energy storage technologies. Case study- Agent based control of EV battery charging. SLC: Microgrid and renewable energy. Text books:															

1. Janaka Ekanayake, Nick Jenkins, Kithsiri Liyanage, Jianzhong Wu, Akihiko Yokoyama, "Smart Grid: Technology and Applications", wiley India.

Reference Books:

- 1. Bharat Modi, Anu prakash and Yogesh Kumar "Fundamentals of Smart Grid Technology"
- 2. James Momoh "SMART GRID Fundamentals of Design and Analysis", IEEE press, A John Wiley & Sons, Inc., Publication

Cou	rse Ti	itle				I	ELEC	FRICA	L EN	GINI	EF	ERING	MATE	RIALS		
Cou	rse C	ode			21EE7	'33						(I	L-T-P)	C	(3-0-0) 3
CIE					50							Hou	rs/Wee	k	3	
SEE					50							Tot	al Hour	:s	40	
Cou	rse O	bjectiv	ve: To	enhanc	e the k	nowle	dge on	electri	cal eng	gineer	rin	ng mater	ials.			
Cou	rse ou	itcome	es: At t	he end	of cou	rse, stu	ident v	vill be a	able to:							
#				Co	urse O	utcom	les				N	Mapping	g to PO	s Map	oping to	PSOs
1	Cla	ssify tl	ne diffe	erent el	ectrica	l engin	leering	materi	als.			1			-	
2	Use	the ki	nowled	ge for	differe	nt devi	ces and	d mach	ines			1	-		-	
3	Exp	olain t	he var	ious e	lectric	al mat	erials	used i	in vari	ous		1.	2		_	
	elec	ctrical a	applica	tions.	<u> </u>								-			
4	Cla	ssify th	ne diffe	erent el	ectrica	l engin	leering	materi	als.			1	-		-	
	<u></u>	-	1	-		Co	ourse A	Articul	ation N	Matri	ix	: 1]
CC	POs Ds	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	9	PO10	PO11	PO12	PSO1	PSO2
CC) 1	2														
CC)2	2														
CC)3	2	3													
CC)4	2														
	MODULE-1 8 Hrs															
Con semi Tran	ductin condu smiss	ng Ma actor, 7 ion lin	aterials Types contes, contes, contes	s: Class of conc ncept c	ssificat ducting of strai	ion of g mater nded c	mate ials, m onduct	rials b aterials ors, bi	ased of hig s of hig metals,	on At gh an , con	to d] ita	mic stru low resist ct mater	icture f stivity, l ials, ca	for conc Material rbon ma	luctor, s used f aterials,	insulator, or Lamp, Thermo-
coup		lenais	, skill e	neci, p		ity ene	MOD		ruse III	ateria	aı	(Fleece	s Law)			17 Ung
Insu	latior	n and d	lielecti	ric mat	terials	• Introd	duction	ULE-2	ric dinc	le di	in	ole mor	ent die	lectric n	naterials	nolar &
non-	polar	dielect	trics. st	atic di	electric	const	ant. ele	ectrical	polari	zatio	n i	mechani	sms, tei	mperatu	re deper	dence of
diele	ctric	consta	nt, inte	rnal fi	elds in	liquid	s and	solids,	dielect	ric lo	os	ses. Cha	racteris	tics of a	a good i	nsulating
mate	rials,	Gaseo	us insu	lating	materi	al -pro	perties	s and c	ompos	ition	of	f gases,	Liquid	insulatir	ng mater	ial, solid
insul	ating	materi	al, insu	lating	varnis	hes, in	sulatin	g mate	rials fo	r trar	nsf	formers,	machin	les, instr	ument &	k magnet
wire	s, cap	acitors	, overh	ead tra	nsmiss	sion lin	les.	-								_
							MOD	ULE-3	}							10 Hrs
Mag ferro paran hard	Magnetic Materials: Introduction, magnetic parameters, classification of magnetic materials, principal ferromagnetic elements, Ferromagnetism, magnetic domains. Magnetic Anisotropy, magnetostriction, paramagnetism, diamagnetism, magnetically soft materials, magnetically hard materials, B-H curves of soft and hard magnetic materials, special purpose materials, feebly magnetic materials and its application.															
L		-				_	MOD	ULE-4								10 Hrs
Mate type diele Prob	erials resist ctric lems.	for elector , cr capaci	ectrica acked tor,gla	l comp carbon ass-die	onent resiste lectric	s: Resi or, allo capaci	stors – by resis tor, pla	carbon stor, wi astic di	n comp ire wou electric	ositio und r c cap	on res oac	sistor , tl citor, Ind	, insulat hermisto luctor s ,	ed moul or Cap Relays	ded resi bacitor – and its t	stor, film - ceramic types and
Text	Fext books:															
$\begin{vmatrix} 1\\2 \end{vmatrix}$	 A.J Dekker, Prentice Hall India Learning Private Limited. Electrical engineering Materials, R.K Rajput, Laxmi Publications. 															

3. An Introduction to Electrical Engineering Materials by Dr.C.S Indulkar, Dr.S.Thiruvengadam

Course Code21EE734(L-T-P) C(3-0-0)CIE50Hours/Week3SEE50Total Hours40Course Objective: To create practical insight about Power System Operation and Control, hence several intricate issues involvedCourse outcomes: At the end of course, student will be able to:	3 study											
CIE50Hours/Week3SEE50Total Hours40Course Objective: To create practical insight about Power System Operation and Control, hence several intricate issues involvedCourse outcomes: At the end of course, student will be able to:	study											
SEE50Total Hours40Course Objective: To create practical insight about Power System Operation and Control, hence several intricate issues involvedCourse outcomes: At the end of course, student will be able to:	study											
Course Objective: To create practical insight about Power System Operation and Control, hence several intricate issues involved Course outcomes: At the end of course, student will be able to:	study											
several intricate issues involved Course outcomes: At the end of course, student will be able to:												
Course outcomes: At the end of course, student will be able to:												
# Course Outcomes Mapping to POs Mapping to PS 1 Function the function in the off neuron construction Image: Course Outcomes Image: Course Outcomes	SUs											
1 Explain the fundamental principles of power system operation												
objectives												
2 Develop various mathematical models for control												
mechanisms.												
3 Analyse the economic and operational aspects of power												
systems with different methods												
4 Solve various real life problems with respect to modern												
methods used in power system operation and control												
Course Articulation Matrix												
POS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 P	PSO2											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
CO1 2 1												
CO2 2 1 1												
CO3 2 1												
CO4 1 1												
MODILE-1	0 Hrs											
Introduction to Dower system operation and control: Introduction operating states of Dower system	istom											
objectives of Power system control key concepts of reliable operation major threats to system security.	- case											
study.	euse											
Introduction to SCADA, components of SCADA system. Digital computer configuration. Introducti	ion to											
voltage and reactive power control-production and absorption of reactive power, methods of voltage control	rol by											
reactive power injection.												
SLC - Indian power sectors												
MODULE-2 1	0 Hrs											
Automatic Generation control and interconnected Power systems:												
Introduction, basic generator control loops, commonly used terms in AGC, functions of AGC, speed gover	rnors,											
mathematical model of ALFC, Automatic generation controller, proportional integral controller, Ti-	e-line											
control with primary speed control, Tie-line bias control (frequency bias Tie-line control)												
SLC - Practical implementation of AGC in India.												
MODULE-3	0 Hrs											
Economic Operation of Power Systems: Introduction to Economic and Operational aspects of F	Power											
Systems, Optimal system operation with thermal plants, constraints in economic operation, Spinning res	serve,											
Performance Curves, Incremental production costs for steam power plants, Problems of Economic	Load											
Scheduling - solution through Equal Incremental cost criterion for operation of power plants, EqualIncremental												
cost criterion for operation of power plants with generation capacity limits and transmissionlosses considered transmission loss as a function of plant generation, the P coefficients, expression for incremental transmission	ission											
loss in terms of B-coefficients. Numerical Examples comprising of all the cases included above	1991011											
SLC- Algorithm for economic dispatch problem including losses												
MODIILE-4	0 Hrs											
Unit commitment: Introduction Constraints in unit commitment Priority list method dynamicprogram	nmina											
Alternative approaches to unit commitment												
SLC-Security of power system												

Text books:

1. Power System Operation and Control, Dr. K Uma Rao, Wiley India.

Reference Books:

- 1. George L. Kusic; Computer Aided Power System Analysis, PHI, New Delhi, II Edition Reprint, 2003. Calculus by Thomas Finney, 9th edition, Pearson education, 2002.
- 2. B.M. Weedy, B.J. Cory; Electric Power systems, John Wiley and sons, 4th edition.

PROFESSIONAL ELECTIVE COURSE – IV

Course T	Course TitleINDUSTRIAL DRIVES AND APPLICATIONSCourse Code21EE741(L-T-P) C(3-0-0) 3UE50Hourse (Woold2														
Course C	Code				21EE7	41					(L-T-F	P) C	((3-0-0) 3	3
CIE					50					H	lours/W	eek		3	
SEE					50					1	Fotal Ho	ours		40	
Course C)bjecti	ve: To	analyz	e the v	vorking	g of vai	rious el	lectrica	l ma	ch	ines fed	from po	ower con	nverters	
Course o	utcom	es: At	the end	l of cou	urse, st	udent v	vill be	able to	:						
#			Cou	urse O	utcom	es				N	Mapping	g to POs	s Maj	pping to) PSOs
1 Des	scribe t	he dyn	amics	of elect	tric dri	ves.	1.0	1			1			1	
2 Ana	alyse the	he ope	ration	of DC	, Indu	ction a	ind Syl	nchron	ous		1,	2		1	
	tor ariv	ves.	probla	maon	ontrol	ofmo	tor driv	100			1	2		1	
5 301	ve nun	lencal	proble			ourse /	Articul	lation	Mat	ris	1, x	2		1	
POs							Inticu				`				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	9	PO10	PO11	PO12	PSO1	PSO2
CO1	2													2	2
CO2	2	3												2	2
CO3	2	3												2	2
MODULE-1 12 Hrs											17 Urg				
MODULE-1 12 Hrs															
of electri	col dri			f alact	rical d	rives f	fundar	ontal t	foral		equation	vantage	torque		tions and
Multiqua	drant of	operati	on equ	nivaler	nt valu	e of o	lrive r	arame	ters	iC	compon	ents of	load to	orques	nature &
classifica	tion of	load to	orques.	load e	qualiza	tion.		aranne		,	compon	ente or	1000 10	nques,	
SLC: Sta	tus of A	AC&D	C drive	es	1										
					Ν	10DU	LE-2								10 Hrs
DC Moto	or Driv	ves: Int	roduct	ion to	DC mo	otors, s	tarting	, braki	ng, 🛛	Γra	ansient A	Analysis	-(a) Tra	nsient a	nalysis of
separately	y excite	ed mot	or witl	n arma	ture co	ontrol ((b) Tra	nsient	anal	ysi	is of sep	oarately	excited	motor v	with field
control.,	Contro	lled R	ectifier	· Fed D	OC driv	ves-(a)	Single	phase t	fully	cc	ontrolled	rectifie	r contro	l of DC s	separately
excited m	otor (b) Singl	e phase	e half-c	ontroll	ed rect	ifier co	ontrol o	f DC	c se	eparately	v excited	l motor ((c) Dual	converter
control of	f DC se	eparate	ly excit	ted mo	tor (d)	Contro	ol of fra		I HP	m	otors.				
SLC: Spe	eed con	itrol, N	lethods	s of Ari	mature	Voltag	ge cont	rol							
					Ν	IODU.	LE-3								10 Hrs
Induction	n Moto	or Driv	ves: Int	roduct	ion to	IM, Op	peratio	n with	unba	ala	inced so	urce vol	tages ar	id single	e phasing,
operation	with u	nbalan	ced rot	or imp	edance	es, start	ing, bra	aking, y	varia	ıbl	e freque	ncy con	trol from	n voltag	e sources,
Voltage s	Voltage source inverter control, slip power recovery, linear induction motor and its control.														
SLC: Cycloconverter converter															
		.		-	N	IODU	LE-4				<u> </u>				8 Hrs
Synchron	ious N	lotor 1	Drives	: Intro	duction	n to sy	nchror	nous m	otor	s,	Operatio	on from	fixed f	requenc	y supply,
synchrono SLC Bru	ous mo Ishless	tor var	tor Dr	peea a ives	rives, S	51nuso1	dai PM	IAC M	otor	ar	ives				
Text boo	ks:														
1. K	.Dubey	, Fund	amenta	uls of e	lectric	drives,	2nd E	dition,	Naro	osc	o Publish	ing Hou	ise, 5th	Reprint,	Chennai-
20	1. K.Dubey, Fundamentals of electric drives, 2nd Edition, Naroso Publishing House, 5th Reprint, Chennai- 2002														

Reference Books:

1. N.K.De & P.K.Sen, Electrical Drives, PHI-2007.

2. S.K. Pillai, A First Course on Electric Drives, Wiley Eastern Ltd.

Course	burse TitleELECTRICAL POWER QUALITYburse Code21EE742(L-T-P) C(3-0-0) 3E50Hours/Week3														
Course	Code			2	1EE7 4	12					(L-	T-P) C		(3-0-0)	3
CIE					50						Hour	s/Week		3	
SEE					50						Total	Hours		40	
Course	Object	ive: T	o inter	pret th	ne pow	er qua	lity ph	nenome	enon	a	nd estin	nate the	harmor	nics in e	electrical
systems.															
Course	outcom	es: At	the en	d of co	urse, st	tudent	will be	able to):	1					
#			Cou	urse O	utcom	es				N	Mapping	g to POs	s Maj	pping to	PSOs
1 Red	cognize	the dif	fferent	termin	ologies	s of po	wer qu	ality.			1,	2		1	
2 Inte	erpret tl	ne vario	ous pov	wer qu	ality va	riation	IS.				1,	2		1	
3 Ap	ply suit	able so	olutions	s for tra	insient	s and h	armon	ics.			1,	2		1	
4 Des	scribe	the in	itercon	nectior	i stan	dards	associa	ated v	vith		1,	2		1	
pov	ver qua	lity.			C	ourse /	Articul	ation	Mati	riv	7				
POc									lau	. 1/	<u>►</u>				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2												2	
CO2	2	2												2	
CO3	3	2												2	
CO4 2 2 2 2 2															
MODILE-1 10 Hrs												10 Hrs			
Introdu	otion.	Dowar	Quality	v volta		lity no		nolity o	volu	ati	ion proc	aduras	ganaral	ماعدوم	of power
quality	nrohler	ns tra	nsients	-long	duratio	nny, po m voli	tage v	ariatio	n sl	ho	rt durat	ion volt	tage var	riations	voltage
imbalan	ce. wav	eform	distorti	on. vo	ltage fl	uctuati	ons. po	ower a	ualit	v t	erms.		uge tu	inacionis,	vonage
	,			- ,		MOD	ULE-2	2		<u> </u>					10 Hrs
Voltage	sags a	nd In	terrup	tions:	Source	es of s	ags an	d inter	rupti	ior	ns, estin	nating v	oltage s	ag perfe	ormance,
fundame	ntal pri	inciples	s of pro	otection	n, Moto	or sags.			•			C	C	01	
Transie	nts ove	r volta	iges: S	ources	of trai	nsients	over v	oltages	s, pri	inc	ciples of	over vo	oltages p	orotectio	n, utility
capacito	r switch	ning tra	insients	s.											
						MOD	ULE-3	3							10 Hrs
Fundam	entals	of har	monic	s: Har	monic	distort	tion, ha	armoni	c inc	dey	xes, hari	monic so	ources f	rom con	nmercial
loads, ha	rmonic	source	es from	indus	trial lo	ads, eff	fects of	f harmo	onics	s di	istortion				
Applied	Harm	onics:	Harmo	nic dis	tortion	evalua	tions, j	princip	les fo	or	controll	ing harm	nonics, h	armoni	c studies,
devices i	for cont	rolling	, harmo	onic dis	stortion	i, harm	onic fi	Iters.							40.77
						MOD	ULE-4	1							10 Hrs
Power q	uality	bench	mark:	Introd	uction,	bench	mark i	n proc	ess, j	po	wer qua	lity cont	ract, po	wer qua	lity state
estimatio	on, incl	uding p	power	quality	in dist	tributio	on plan	ning, ii	nterf	ac	e to utili	ity syste	m, powe	er qualit	y issues,
intercon	nection	standa	rds.												
Text bo	oks:	Dagan	C Com	4000 0				Maul	- E/F			II Warm	a Elast		· · · · · · · · · · · · · · · · · · ·
1. L N	1. Dugan, Roger C, Santoso, Surya, McGranagnan, Mark F/Beaty and H. wayne, Electric power quility, McGraw-Hill Professional Publication 2003														
Referen	Reference Books:														
1. (G.T. He	ydt, El	ectric I	Power	Quality	, stars	in a ci	rcle pu	blica	ntic	ons 1991	l .			
2. N	/I.H. Ra	ashid, N	Modern	Powe	r Elect	ronics '	Tata M	IcGraw	/ Hil	12	2002.				
3. N	/lath H.	J. Boll	en, une	derstan	ding P	ower q	uality	proble	ms v	ol	tages sag	gs and in	nterrupti	ions IEE	EE Press,
2	000.					_									

Cour	se T	litle					FLE	XIBLE	E AC T	RAN	SMISSI	ON SYS	STEMS			
Cour	se (Code				21EE'	743				(]	L-T-P)	С	(3-0-0) 3		
CIE						50					Hou	rs/Wee	k	3		
SEE						50					Tot	al Hour	s	40		
Cour Cour	se (se o)bjecti outcom	ive: To nes: At	o under the en	stand i d of co	mporta urse, s	nce of tudent	FACT will be	S contraction of a cont	roller	in transm	ission s	ystem.			
#				C	ourse (Jutcor	nes				Марріі	ng to PC	Ds Ma	apping t	o PSOs	
1	Ex	plain b	basics of	of Flex	ible AC	C Trans	smissio	on Syst	ems.			1		1		
2	Ap ST	ply t ATCC	he co DM.	ncepts	of S	Static	Var (Compe	nsator	and	-	1,2		1		
3	De	escribe	the op	eration	of TC	SC, G	CSC, T	SSC, S	SSSC.		-	1,2		1		
4 Apply the concepts of voltage regulators, phase angle 1,2 1																
						C	ourse A	Articul	lation]	Matri	x	1				
P COs	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1		3												3		
CO2		3	3											3		
CO3		2	3											2		
CO4		2	3											2		
							MOD	ULE-1	1						10 Hrs	
FAC	TS (Conce	nts & (Genera	al Syst	em Co	nsider	ations	· Flow	of nor	wer in an	AC syst	tem lim	its of th	e loading	
capat	FACTS Concepts & General System Considerations: Flow of power in an AC system, limits of the loading capability, Power flow and dynamic stability considerations of a transmission interconnection, relative importance of controllelle percentations.															
FAC	TS c	control	lers. Be	enefits	from F	FACTS	sie typ	25 01 12	ACIS	contro	JICIS, DI		iipuon a			
Volta phase	e-leg	Sourc g opera	ed Continuition, second	nverte quare v	rs: Ba wave v	sic co oltage	ncept, harmo	Single nics fo	-phase or a sin	full-v gle-pl	wave brights b	dge con ge, three	verter o e phase	operation full way	n, Single ve bridge	
COIIV		, sequ		varve	conduc	LION P	MOD)	-icg.					10 Hrs	
Stati	o Sh	unt C	omnor	sotor	SVC	Objec	tive of	CLL-2	<u>-</u>	nantio	n Matha	de of co	ntrollah		10 111 5	
gener	acter	on (Var	iable In of - TC	mpedar CR, TSI	nce typ R, FC-'	e, Swi TCR.	tching	conver	ter typ	e, Hyl	orid Var	generato	ors), Typ	bes and	V-I	
STAT	ГСС	DM: C	ompar	ison be	etween	SVC a	and ST	ATCO	M, Th	e Prir	nciple of	STATC	OM OF	peration,	The V-I	
Chara	acter	ristic,	The r	egulati	on slo	ope, T	ransfe	funct	tion a	nd dy	ynamic p	performation	ance, ti	ansient	stability	
enhar	ncen	nent ar	nd pow	er osci	llation	dampi	ng, Va	r reserv	ve cont	rol.						
							MOD	ULE-3	3						10 Hrs	
Stati	c Se	ries C	ompen	sators	- TCS	C, GC	SC, TS	SSC: O	bjectiv	ves of	series co	mpensat	tion, Va	riable in	npedance	
Adva	or s	ves of	the TC	SC O	neratio	n of th	e TCS	C M	non, i odes o	f TCS	C Opera	tion- By	unassed.	Thyrist	or Mode	
Block	ked-	Thvris	tor Mo	ode. Pa	rtially	Condu	icting	Thvrist	tor and	l Veri	ier Mod	e. V-I α	characte	ristics o	of TCSC.	
Opera	atio	n and V	√-I cha	racteri	stics of	GCSC	C and T	TSSC.				-,				
Swite capab	Switching converter type series compensators- SSSC : The Principle of Operation, V-I characteristics, capability to provide real power compensation, immunity to sub-synchronous resonance.															
	MODULE-4 10 Hrs															
Stati	Static Voltage and phase angle regulators: Objectives of Voltage and Phase Angle Regulation, Power Flow															
Contr	Control by Phase Angle Regulators, Real and Reactive Loop Power Flow Control, Improvement of Transient															
Stabi	lity	with pl	hase A	ngle Re	egulato	ors, Po	wer Os	cillatio	on Dam	nping	with phas	e Angle	Regula	tors, Ap	proaches	
to T	hyri	stor-Co	ontrolle	ed Vo	ltage a	and pł	nase A	ngle I	Regula	tors (TCVRs	and TO	CPARs)	, Cont	tinuously	
Conti	rolla	ble T	hyristo:	r Tap	Chang	ers, C	ontinu	ously (Contro	Ilable	Thyristo	r Tap	Change	rs, Thyi	stor Tap	
Phase	ger e An	igle Re	gulato	rs.	Contr	oi, swi	cining	conver		scu v(mage and	1 priase	angle fe	guiators	s, 11yund	

Unified Power Flow Controller – UPFC: Introduction, The Unified Power Flow Controller, Basic Operating Principles, Conventional Transmission Control Capabilities, Interline **Power Flow Controller - IPFC**: Basic Operating Principles and Characteristics.

Text books:

- 1. Narain G. Hingorani and Laszlo Gyugyi, Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems, IEEE Press, Standard Publishers Distributors, Delhi, First Edition, 2001.
- 2. R. R. Mohan Mathur and Rajiv K. Varma, THYRISTOR-BASED FACTS CONTROLLERS FOR ELECTRICAL TRANSMISSION SYSTEMS, IEEE Press, John Wiley and Sons, First Edition, 2002.

Reference Books:

1. K. R. Padiyar, FACTS, Controllers in Power Transmission and Distribution, New Age International Publishers, First Edition, 2007.

Course 7	Course Title SOLAR POWER CONVERSION SYSTEMS													
Course (Code				21EE '	744			001		(L-T-P)		(3-0-()) 3
CIE					50					Н	ours/We	ek	3	.,
SEE					50					T	otal Hou	irs	40)
Course (Object	ive: To	design	n solar	PV sys	stem fo	or real t	time ap	plica	ations.		•		
Course o	outcom	nes: At	the en	d of co	urse, s	tudent	will be	able to):					
#			Co	urse O	utcom	es				Mappin	g to POs	s Maj	pping to) PSOs
1 Exp	lain th	e struct	ure of	solar I	PV cel	ls, coni	nection	ı diagra	ms	1	2		1	
of modules and array for real time applications.														
2 App	oly con	cepts of	f solar	therma	al and I	PV sys	tems.			1	,2		1	
3 Ana	lyze si	zing of	solar 1	nodule	s, batte	ery and	invert	er syste	ems	1	.2		1	
tor :	standa	lone app	plicati	$\frac{\text{ons.}}{1}$						1	2		1	
4 Esti	mate r	eal time	e cost (of solai	$\frac{PV}{C}$	/stem.	A	I = 4 ¹ = 1	1.4	I	,2		<u> </u>	
		<u>і </u>		<u> </u>		ourse A	Articu	ation	viati		Γ		<u> </u>	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	9 PO10	PO11	PO12	PSO1	PSO2
CO1	3	2							3					
CO2	3	2											2	
CO3	3	2											3	
CO4	3	1											2	
	MODULE-1 10 Hrs													
Basic of	Solar	PV Cel	ls: Str	ucture	of sole	r cell.	types c	of solar	cell	equivale	nt circuit	t of a PV	/ cell. I-	V and P-
V charac	teristic	s solar	cell, so	olar cel	l effici	ency, f	fill fact	or, Eff	ects	of temperation	ature, irr	adiance,	, series a	ind shunt
resistance	e on ch	naracter	istics of	of solar	cell.	•				-				
Solar Ph	otovol	taic M	odules	s: Solar	r PV m	odules	& arra	ays from	m so	lar cells -	Series a	nd paral	lel conn	ection of
modules,	mism	atch in	cell/m	odule.	Misma	tch in	series	connec	tion	- Hot spo	ts in the	module	& bypa	ss diode,
mismatch	ning in	paralle	l conn	ection	- block	ting Di	ode.							
SLC: MI	PPT Te	echnolo	gy										r	
						MOD	ULE-2	2						10 Hrs
Solar Th	ermal	System	ns Des	ign &	Appli	cations	Solar	r therm	al sy	stems-coi	ncentrati	ng & no	n- conce	entrating
types of a	collect	ors with	n exam	ples. L	iquid l	Flat pla	te coll	ectors	-woi	rking prin	ciple, Pe	rforman	ce analy	/sis,
Energy g	ain and	d therm	al effi	ciency,	numer	rical ex	ample	s.						
Applica	tions –	- Solar y	water l	heater-	workin	ig princ	ciple, t	ypes of	hea	ting syster	n, comp	onents &	zspecifi	cations,
design & costing of solar water heater. Solar cooking systems-Box type & dish type solar cookers-materials														
used, payback period calculations. Solar based power generation.														
SLC: Space neating systems														
						MOD	ULE-3	3						10 Hrs
Photovoltaic Systems Design & Applications: Basic components of SPV system, stand-alone PV system														
configura	ations.	Design	metho	odology	/ of PV	systen	ns-PV -	-power	red D	DC Fan wi	thout bat	tery syst	em, PV	powered

DC pump. Design of stand-alone PV system with battery & inverter for AC - DC load- Design of sizing of PV module, inverter, Battery bank for a given AC load and numerical examples. Hybrid PV systems-, types of hybrid systems, issues with hybrid system. Grid connected PV systems –two stage grid connected systems. **SLC:** Battery storage system

MODULE-4

10 Hrs

Economic analysis: Lifecycle costing (LCC), time value of money, present worth of future one –time investments, present worth of future worth of future recurring investments, Life cycle cost, Annualized LCC (ALCC), unit cost of generation and numerical examples. Initial and annual costs, definitions, Repayment of loan in equal annual installments costs, Annual solar savings, Cumulative solar saving (CSS) and lifecycle savings, payback period and numerical examples.

SLC: ADD-ON solar systems.

Text books:

- 1. Chetan Singh Solanki, Solar Photovoltaic Fundamentals, Technologies and Applications. 3rd edition, PHI Learning Pvt. Ltd.
- 2. S.P. Sukhatme, Solar Energy: Principles of thermal collection and storage. McGraw-Hill Education, 1996.

Reference Books:

- 1. ChenmingHu,R. M. White, Solar cells-From Basic to Advanced Systems, McGraw-Hill, 1983.
- 2. G.D. Rai, Non-conventional Energy Sources
- 3. D.Yogi Goswami, F.Kreith and J.F.Kreider: Principles of Solar Engineering, McGraw Hill, 1978.

ELECTIVE – VI (INDUSTRY ELECTIVE)

Course Title PLC FOR INDUSTRIAL APPLICATIONS																	
Co	ırse (Code				21EI	E 75 1					(L-	T-P) C		(0-0-1)	1	
CII	E					5	0					Hours	s/Week		2		
SE	E					5	0					Total	Hours		26		
Co	irse (Objecti	ive: To	devel	op PLC	2 progr	ams fo	r indus	trial ap	oplica	ati	ons.					
	irse o	outcom	les: At	the en	d of co	urse, si		will be	able to): 			40 DO	Ma		DCOa	
# 1	Dec	oribo o	rchiter	COL tura ar	urse U	ulcom	f DI C				N		<u>5 10 POS</u>		2 viapping to 1 505		
2	Dis	cities in	nut ou	tnut de	vices I	ised wi	$\frac{11}{11}$ LC.	<u>ا</u> د					5		2		
3	Apr	oly lade	der pro	gramm	ing usi	ing bas	ic and	advanc	ced lad	der							
logic to solve control problems.									1,2,	3,5		2					
						Co	ourse A	Articul	ation 1	Matı	rix	X					
CC	POs)s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	9	PO10	PO11	PO12	PSO1	PSO2	
CC)1	3				3										2	
CC	02	3				3										2	
CC)3	3	2	2	2	3										2	
	MODULE-1 6 Hrs																
Int mer Inp pho	Introduction to PLC: Programmable logic controller hardware and internal architecture, CPU, buses, memory, input/output unit, sourcing & sinking, PLC programming. Input devices: Common terms to define performance of sensors, mechanical switches, proximity sensors, photoelectric sensors and switches, encoders, temperature sensors.																
DL		<u>c 0115</u>	1 Stan				MOL	DULE-	2							6 Hrs	
Inp sen Ou SL	ut de sor, si tput d C: sin	vices: nart se levices gle and	Positio nsor. Relay d doubl	on/displ y, solei le actir	laceme noids a ng cylin	nt sens nd dire iders	ors, str	ain gau valves	uge, pro	essur otor	re co	sensors, ontrol, st	liquid le epper m	evel sen otor dri	sor, fluie ves.	d flow	
							MOL	OULE-	3							6 Hrs	
PL latc Ad SL	C La hing, v ance C: fur	dder p interlo d Lad	rogran cking, der Lo plocks	nming enterir ogic: Ju	: Ladd ng prog 1mp, ju	er diag rams, l mps w	grams, adder j ithin ju	PLC la prograi imps, s	dder p ns for ubrout	rogra simp ines,	am ole , m	nming, lo applicat naster co	ogic fun ions. ntrol.	ctions, 1	multiple	outputs,	
							MOL	DULE-	4							7 Hrs	
Ad of c SL Tex	Advanced Ladder Logic: Types of timers, on-delay timer, off-delay timer, pulse timer, retentive timer, forms of counters, up-counter, down-counter, ladder programs for industrial applications SLC: Timers with counters. Text books:																
	1. W. Bolton, "Programmable Logic Controllers", Elsevier Publication, Oxford UK.																
Ref	 Reference Books: E.A Paar, "Programmable Controllers-An Engineers Guide", Newness publication. Johnson Curties, "Process Control Instrumentation Technology", 8th edition, Prentice Hall of India. John W Webb, Ronald Reis, "Programmable logic controller: principle and application", Pearson publication. 																

OPEN ELECTIVE – II

Course T	`itle		SMART GRID TECHNOLOGIES											
Course C	lode			21	OEEF	E 7 1					(L-T-P) C	(3-0-	0) 3
CIE					50					Ho	ours/W	eek	3	
SEE					50					To	otal Ho	urs	40)
Course C)bjecti	ve: To	demo	nstrate	the m	oderniz	zation	of Ele	ctrical	Power S	Systems	and to	address	Issues in
Smart Gri	id Impl	ement	ation.	1 C		1 /	•11 1	11 /						
	utcom	es: At	the end	$1 \text{ of } \operatorname{col}$	irse, st	udent v	will be	able to	: ·•	4. DO		N		
#	manat d	fform	ourse	Outcol	mes	ant and		IVI		g to POs	\$	Mappi	$\frac{\mathbf{ng} \text{ to } \mathbf{P}_{1}}{1}$	SUS
1 Inte	tify vo	rious a	vonuos	$\frac{\text{offens}}{\text{of Sm}}$	OI SIII	<u>iit gilu</u> d in cor	ntavt ta		1				1	
2 Iuch	time n	nower s	venues	operati	an giù	1 111 COI			1				1	
3 Exp	3 Explain and analyze operational features of Smart 1													
grid	grid.													
4 Ass	ess rol	le of	Smart	grid t	o add	ress re	al life		1	6			1	
chal	lenges	in pov	ver syst	tem op	eration	and co	ontrol		-,	0			-	
					C	ourse A	Articul	ation]	Matrix	[
POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
COs		102	100	101		100	107	100	107	1010	1011	1012	1.501	1002
CO1	3												3	
CO2	3 3													
CO3	3												3	
CO4 3 2 3														
														10.11
Introduct	ion to	<u>Concert</u>	Cride	Evelut	on of I	MODU		7	on of In	dian Na	tional (wid Door	ulatamu a	10 Hrs
in Indian	lon to Power	SIIIari sector	Gria:	Evolution of Si	1011 01 E mart Gi	rid Wh	Gria, r	ement f	on or n he Sme	iulali Na	1000000000000000000000000000000000000	arly Sma	ulatory a	nitiatives
Overview	of the	techno	blogies	require	ed for	the Sm	art Gri	d. Opr	ortunit	ies & B	arriers	of Smart	Grid. E	Difference
between c	onvent	ional &	smart	grid.				-, -ri					, _	
Informati	ion an	d com	munica	ation t	echnol	ogies:	Data c	ommu	nicatior	- Introd	luction,	switchin	ig techni	ques and
communic	cation c	hannel	s. Laye	red arc	hitectu	re and j	protoco	ls-ISO	/OSI m	odel and	I TCP/II	2		
SLC: Sn	hart grie	d initia	tives in	India										10 IIma
Smart Gr	id Ena	hling 7	Techno	logies	Smart	meterir	ULE-2	compo	nents o	f smart r	netering	overvie	w of the	hardware
used. Sig	nal ac	auisitia	on. Sig	mal co	ondition	ning. /	Analogi	ie to	digital	conver	sion. C	omputati	on. Inp	ut/output.
Communi	cation.	4	,	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					•••••••		9111p	,p	an ourpan,
Commu	nicatio	ns infr	astruct	ure: H	ome-ar	rea netv	vork, N	eighbo	rhood a	irea netw	ork, Da	ta concei	ntrator, N	/leter data
managen	nent sys	stem, P	rotocol	s for co	ommun	ication	s.							
SLC: Cy	ber Sec	curity f	or Sma	rt Grid										10.11
Domand	sida ir	tograt	ion. S	omioos	provi	MODU	ULE-3	Implo	montot	ions of	DCI I	Iorduoro	auppor	<u>IU Hrs</u>
implemen	side II	negrai	1011: 2	ervices	provi	ded by	y DSI,	mple	mentat	IONS OF	DSI, I	laluwale	suppor	
Smart N	leasur	ement	and M	Ionitor	ring Te	echnolo	ogies: S	Smart S	Substat	ions. Su	bstation	Automa	tion equ	lipment's.
Intelliger	nt Elect	ronic I	Devices	(IED)	& their	applic:	ation fo	r moni	itoring	& protec	tion.		1	1
SLC: Co	mputat	tional to	ools to	Smart (Grid					_				
						MODU	ULE-4							10 Hrs
Distributi	ion ma	anagen	ient sy	vstems:	Introc	luction	, Data	sourc	es and	associa	ted exte	ernal sys	tems, S	SCADA,
analysis to	Modelling and analysis tools : Topology analysis, Load forecasting, Power flow analysis, Fault calculations, Other													
Energy S	Energy Storage Technologies: introduction, various energy storage technologies. Case study- Agent based control													
of EV ba	of EV battery charging.													
SLC: Mi	crogric	l and re	enewab	le energ	gy									
Text books:														
1. Ja	1. Janaka Ekanayake, Nick Jenkins, Kithsiri Liyanage, Jianzhong Wu, Akihiko Yokoyama, "Smart Grid:													
16	cnnolo	gy and	Аррис	ations	, whey	india.								

Reference Books:

- Bharat Modi, Anu prakash and Yogesh Kumar "Fundamentals of Smart Grid Technology"
 James Momoh "*SMART GRID Fundamentals of Design and Analysis*", IEEE press, A John Wiley & Sons, Inc., Publication

Course '	Course Title LITH IZATION OF FLECTRICAL POWER														
Course	Code				2101	EEE72					(L	- T-P) C		(3-0-0) 3	
CIE					-	50				E	loui	rs/Week	<u>.</u>	3	
SEE						50]	`ota	l Hours	5	40	
Course	Objecti	ve: To	unders	erstand usage of power in various electrical applications.											
Course of	outcom	es: At	the end	l of cou	irse, st	udent v	vill be	able to	•						
#			Cou	urse O	utcom	es				Map	oin	g to POs	s Maj	pping to	PSOs
1 Dis	scuss the	operati	ion of e	lectric o	drives						1	-		1	
2 De we	scribe c lding.	lifferent	metho	ods of	electri	cal hea	iting ai	nd elec	tric		1,	2		1	
3 Explain various techniques for designing indoor &outdoor lighting 1,2 1															
					C	ourse A	Articul	lation 1	Mati	rix			I		
POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	9 PO	10	PO11	PO12	PSO1	PSO2
CO1	3													2	
CO2	3	3												2	
CO3	3	3												2	
ELECTRIC DRIVES: Type of electric drives, choice of motor, starting and running characteristics, speed															
ELECTRIC DRIVES: Type of electric drives, choice of motor, starting and running characteristics, speed control temperature rise particular applications of electric drives types of industrial loads continuous															
intermitt	ent and	variab	le loads	s, load	equaliz	zation.	5 01 C	leetiie	GIIV	c s, cj		or mae	istitui it	<i>Juus, co</i>	ninaous,
				,		MOD	ULE-2	2							10 Hrs
ELECT	RIC H	EATIN	IG AN	D WE	ELDIN	G: Ad	vantag	es and	met	hods o	f el	ectric h	eating, 1	esistanc	e heating
induction	n heatin	ng and	dieleo	ctric h	eating.	Elect	ric we	lding,	resis	stance	and	d arc w	elding,	electric	welding
equipme	nt, com	parisor	betwe	en A.C	C. and I	D.C. W	elding	<u>. </u>							40.77
						MOD	ULE-:				TTC		. 1		10 Hrs
illumino	INATIO	UN FU		VIEN I	ALS A	AND L	LLUM nhotor		inta	MEI	HC	DDS: In	troduction	on, term	s used in
lamps M	IOII, Iav	8 01 1 SV lam	$n_{n} = cc$	ation, j	polar c	ween t	prioror	neury, 1 filam	integ	amns a	spi nd t	fluoresco	ent tubes	Basic 1	rinciples
of light c	ontrol	Types	and de	sign of	liohtir	or and	flood li	iohtino		amps a	nu	luoresev		s, Dasie j	merpies
01 11811 0		-) P•0				MOD	ULE-4	1 1							10 Hrs
ELECT	RIC T	RACT	ION:	Systen	n of el	ectric 1	ractior	and t	rack	electr	fica	tion. Re	eview of	f existin	g electric
traction	systems	in Ind	lia. Spe	ecial fe	eatures	of trac	ction n	notor, 1	neth	ods of	ele	ctric bra	aking-pl	ugging	heostatic
braking a	braking and regenerative braking.														
Text boo	Text books:														
1. "	1. "Utilization of electrical energy" by E.O.Taylor.														
L	2. Electrical Drives: Concept and applications by vedam Subranmanyam THIVI.														
1. "	1. "Art and Science of Utilisation of Electrical Energy" by H.Pratab, DhanpatRai& Co.														

Course Title	RESEARCH METHODOLOGY	& INTELLECTUA	L PROPERTY RIGHTS
Course Code	21RIP01	(L-T-P) C	(0-2-0) Audit
CIE	100	Hours/Week	2
SEE	-	Total Hours	28

Course Objective: Understand research methodology, design, data collection, and analysis techniques and gain knowledge of Intellectual Property Rights (IPR) with a focus on patents, designs, trademarks, and copyrights, including their registration and protection procedures.

Course outcomes: At the end of course, student will be able to:

#	Course Outcomes	Mapping to POs	Mapping to PSOs
1	Acquire research skills and conduct comprehensive literature reviews	8,10, 12	-
2	Apply research design knowledge to create prototype	3,4, 8, 10,12	-
3	Evaluate methods for data collection, analysis, and sampling design	4, 8, 10, 12	-
4	Understand global and Indian patent scenarios, as well as registration requirements, infringements and protections related to trademarks, copyrights, and designs	6,8, 10, 12	_

Course Articulation Matrix

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1								3		2		3		
CO2			3	3				3		2		3		
CO3				3				3		2		3		
CO4						3		3		2		3		

MODULE-1

Research Methodology: Introduction, Meaning of Research, Objectives of Research, Types of Research, Ethics in Research, Types of Research Misconduct. Literature Review and Technical Reading. Citations: Functions and Attributes, Impact of Title and Keywords on Citations, Knowledge flow through Citations, Acknowledgments.

MODULE-2

Research Design: Need for Research Design, Important Concepts Related to Research Design: Dependent and Independent Variables, Extraneous Variable, Variable, Common Control, Confounded Relationship, Research Hypothesis. Experimental Designs: Introduction to Randomized Block Design, Complete Randomized Design, Latin Square Design, and Factorial Design.

MODULE-3

Method of Data Collection: Primary and Secondary Data Collection. Sampling Design: Sampling fundamentals, Measurement, and Scaling Techniques, Criteria of Selecting a Sampling Procedure, Characteristics of a Good Sample Design, and Types of Sample Design. Data Analysis: Testing of Hypotheses: Null Hypothesis, Alternative Hypothesis, Type I and Type II Errors. Procedure for Hypothesis Testing: Mean, Variance, and Chi-square Test.

MODULE-4

Introduction to IPR: Different forms of IPR, Role of IPR in Research and Development. Patents: Principles Underlying Patent Law, Types of Patent Applications in India, Procedure for Obtaining a Patent. Design: What is a Design? Essential Requirements for a Registrable Design, Procedure of Registration of a Design. **Trademarks:** Essentials of a Trademark, Registration, and Protection of Trademarks, Rights Conferred by Registration of Trademarks, Infringements. Copyrights:

Characteristics of Copyrights, Rights Conferred by Registration of Copyrights, Registration of Copyrights, Infringements, Remedies against Infringement of Copyrights.

Activity Components

- Students select a research topic and perform a literature review, identifying existing knowledge, synthesizing prior art, and compiling relevant citations leading to publishing a survey paper.
- Students develop research proposals, including the formulation of research hypotheses.

7 Hrs

7 Hrs

7 Hrs

7 Hrs

- Students collect primary or secondary data, design a sampling procedure, and perform data analysis using statistical techniques.
- Students analyze real-world case study/studies for legal issues and propose solution/s to infringement cases.

The rubrics for evaluation will be set suitably as decided by the BOS and will be announced to the students at the beginning of the semester.

Text books:

- 1. Kothari C R. Research methodology: Methods and techniques. New Age International; 2004.
- 2. Pandey N, Dharni K. Intellectual property rights. PHI Learning Pvt. Ltd.; 2014 Jul 30.
- 3. Deb D, Dey R, Balas V E. Engineering research methodology. A Practical Insight for Researchers. 2019;153.

Reference Books:

1. Thiel D V. Research methods for engineers. Cambridge University Press; 2014 Sep 11.

C	Cour	rse Title	Resear	ch/Industry Internship) III						
C	Cour	rse Code	21INT3	(L-T-P)C		(0-0-24) 12					
E	xan	n	3 Hrs.	Weeks		14-16 weeks					
C	IE		100 Marks	Total Hours							
C	loui	se Objective: It involves a short theoretical or experimental research project supervised by a									
re	esea	rcher/ To bridge the gap between the theoretical knowledge obtained in the classrooms and									
tł	ne p	oractical ski	lls required in the actual work	place							
C	Cour	rse outcom	es: At the end of course, studer	nt will be able to:							
	#		Course Outco	mes		Mapping to PO's					
	1	Get expos	t exposure to real world job environment and gain practical 1,2,3,4,5,10,12								
		experience									
	2	Generating technical paper/s and publish in refereed journal/s 1,2,8,9,10,12									
		and confe	d conferences								

	Guidelines for Research Internship III
Purpose	It involves a short theoretical or experimental research project supervised
	by a researcher.
Skills acquired	 Planning and scheduling. Documentation. Critical thinking. Data collection. Data analysis. Appreciating and practicing the ethical values.
Expected Outcomes	 Generating technical paper/s and publish in refereed journal/s. Possibility of acquiring an intellectual ownership and patent. Build a prototype for an idea on which the research was carried out. File patent/s.
Selection	 In consultation with a researcher/ researchers working in MCE research Centre A research institute Company's R and D department.
Team Size	Can be carried out either individually or in a team(Upto 5 students)
Venue	Laboratory of college A research institute Company's R and D department.
Supervision	Internship shall be carried out under the supervision of a faculty mentor* at the department level
	For all students attending in-house internship, the attendance should be maintained by the Faculty mentor

	Diary							
Parameters	Report							
for	presentation skill							
Assessment	Technical Paper							
	Recommendation Letter from the guide							
Evaluation	CIE (100 Marks) -The CIE marks shall be awarded by a committee ¹⁷ consisting of the faculty mentor and two faculty members of the Department, one of whom shall be the Guide (applicable for in-house interns). The schedule for evaluation will be announced by chairman BOE at the end of the semester. The Evaluation can be done in <i>phases as decided by the internal BOS</i> of the department.							
	The contents of the report and the evaluation Rubrics will be set by the Department based on the assessment parameters							
	SEE (100 Marks) – Contribution to the internship and the performance of each group member shall be assessed individually in semester end examination (SEE) conducted at the department. Marks shall be awarded based on the evaluation of the diary, report, presentation skill and viva voce							
*For interdisc	iplinary internship its necessary to involve an expert from each discipline							
	Guidelines for Industry Internship III							
Purpose	To bridge the gap between the theoretical knowledge obtained in the classrooms and the practical skills required in the actual workplace							
Skills acquired	 Applying the theoretical knowledge in a practical scenario Build confidence in applying the skills learnt Documentation Communication Appreciating and practicing the ethical values 							
Expected Outcomes	 Get exposure to a real world job environment and gain practical experience Build confidence in applying the skills learnt. Enhances Placement Opportunity 							
Selection	 Can select individually Can seek the help from the department 							
Team Size	Can be carried out either individually or in a team(not exceeding 5 students).							
Venue	In a domain specific organization							

Supervision	Internship shall be carried out under the supervision of a faculty mentor* at the department level. One faculty mentor can supervise a maximum of 20 students.
Parameters for Assessment	Diary Report presentation skill Recommendation Letter from the guide
Evaluation	CIE (100 Marks) -The CIE marks shall be awarded by a committee* consisting of the faculty mentor and two faculty members of the Department, one of whom shall be the Guide (applicable for in-house interns). The schedule for evaluation will be announced by chairman BOE at the end of the semester. The Evaluation can be done in <i>phases as decided by the internal BOS</i> of the department.
	The contents of the report and the evaluation Rubrics will be set by the Department based on the assessment parameters SEE (100 Marks)- Contribution to the internship and the performance of each group member shall be assessed individually in semester end examination (SEE) conducted at the department. Marks shall be awarded based on the evaluation of the diary, report, presentation skill and viva voce
*For interdisc	iplinary internship its necessary to involve an expert from each discipline

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	3	-	-	-	-	3	-	3		
CO2	3	3	-	-	-	-	-	3	2	2	-	3		