MALNAD COLLEGE OF ENGINEERING, HASSAN

(An Autonomous Institution Affiliated to VTU, Belagavi)

Autonomous Programmes Bachelor of Engineering

Scheme for

III - VIII Semesters

Academic Year: 2024-25

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Admitted Batch: 2023 – 27

VISION of the Department

To become a department of excellence in the domain of Electrical and Electronics Engineeringproducing competent engineers with research acumen having moral and social values.

MISSION of the Department

- Enhance industry and alumni interaction.
- Promote continuous quality up gradation of faculty and technical staff.
- Time to time modernization of departmental infrastructure to provide state of the art laboratories.
- Create research-oriented culture to invoke the desire and ability of lifelong learning among the students for pursuing successful career.
- Create and sustain environment of learning in which students acquire knowledge and learn to apply it professionally with due consideration of social and ethical values.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

Graduates of the program will be able to

1. Design, analyze, operate and maintain equipment related to electrical and electronic industries with continuous integration with core and allied industries.

2. Use state of art laboratories and modern computer-based tools to pursue a diverse range of career as engineers and researchers.

3. Bring out innovations to provide best solutions to electrical engineering problems.

4. Fulfill the needs of society in solving technical problems using engineering principles, tools and practices, in an ethical and responsible manner.

PROGRAM OUTCOMES (POs)

Engineering Graduates will be able to:

- 1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an

understanding of the limitations.

- 6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and teamwork**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
- 13. **Individual and teamwork**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 14. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 15. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 16. Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: Develop models, design, analyze and assess the performance of different types of electrical machines, control systems and generation, transmission, distribution, protection mechanisms in power systems.

PSO2: Demonstrate knowledge and hands-on competence in the application of circuit analysis and design, associated software and applications, analog and digital electronics and microcontrollers to build, test, operate and maintain electrical and electronic systems.

Assessment	Marks
CIE 1	10
CIE 2	10
CIE 3	10
Activities (Minimum 2)	20
SEE	50
Total	100

Scheme of Evaluation (Theory Courses)

Scheme of Evaluation (Laboratory Courses)

Assessment	Marks
Continuous internal Evaluation in every lab session by the Course coordinator	30
Laboratory CIE conducted by the Course coordinator	20
SEE	50
Total	100

MALNAD COLLEGE OF ENGINEERING, HASSAN

Regulations governing the award of B.E. (2023) Scheme

	Credit Breakup for a Programme							
Sl.		Category					MCE –	
No						Breakup)	Department of EEE	
1.	Humanities and Social	Sciences i	including	Managem	ent courses, including AE	16	18	
2.	Basic Science Courses					22	20	
3.	Engineering Science cou / computer / PL / ET etc	rse includin c.	g worksho	op, drawing	g,basics of electrical / mechanical	24	17	
4.	Professional Core courses	s relevant to	chosen sp	ecializatio	n/branch	59	62	
5.	Professional Elective cour	rses relevan ⁻	t to choser	ı specializa	ation/branch	12	13	
6.	Open subjects - Electives	from other t	echnical a	nd/or eme	erging subjects	12	12	
7.	Project work and interns	hip in indus	try or else	where		15	18	
8.	Mandatory Courses					(non-Credit)	-	
	Total					160	160	
				Semester	-wise Allocation of Credits			
Yea	r	Semester	Credits	Total Crodite	• Lecture (L): one hour/wee	ek : 1 credit		
		1	20	Creatts	• Tutorial (T): Two hours/w	week : 1 credit		
I Ye	ar	1	20	40	 Practical/Lab/Drawing(P): Twohours/week : 1 credit 			
		2	20					
II Ye	ear	3	23	45				
		4 5	22					
III Y	ear	5	22	43				
		6	21					
IV Y	ear	- 7	19	32				
		8	13	1.60				
	Total		160	160				

The duration for courses: Integrated courses and courses with tutorial can have more teaching hours:

- 4-credits 50 Hrs
- 3-credits 40 Hrs
- 2-credits 25 Hrs
- 1-credit 15 Hrs

Scheme of T	eaching for	the 2023-24	Admitted Batch
-------------	-------------	-------------	-----------------------

THIRD SEMESTER						
Course Category and Course Code		Course Title	L-T-P	Credits	Contact Hours	
BSC	23MA301	Linear Algebra and Integral Transforms	3-1-0	3	4	
PCC	23EE302	Electrical Network Analysis	4-1-0	4	5	
IPCC	23EE303	Analog Electronic Circuits (Integrated Laboratory)	3-0-2	4	5	
PCC	23EE304	Electric Power Generation & Transmission	4-0-0	4	4	
PCC	23EE305	Transformers & Induction Machines	3-0-0	3	3	
ESC	23ESEE3X	Engineering Science Course - II	3-0-0	3	3	
HSMC	23SCR3X	Social Connect & Responsibility	0-0-2	1	2	
AEC	23AEEE3X	Ability Enhancement Course - III	0-0-2	1	2	
BSC	23BCM3XX	Bridge Mathematics-1 (Mandate Audit course for Diploma entry students)	3(A)-0-0	Audit	3	
MC	23NYP3X	NSS/Yoga/PE 0-0-2(A		Audit	2	
	Total 23 33					

	Engineering Science Courses – II				
23ESEE31	Electrical and Electronics Measurements	23ESEE33	Sensors and Transducers		
23ESEE32	Introduction to PLC	23ESEE34	IoT and its Applications		
	Ability Enhancement Courses – III				
23AEEE31	Electric Circuits Laboratory	23AEEE33	Electrical Measurements Laboratory		
23AEEE32	Electrical Engineering Practices Laboratory	23AEEE34	Renewable Energy Laboratory		

FOURTH SEMESTER						
Course Cou	Course Category and Course Code Course Title		L-T-P	Credits	Contact Hours	
IPCC	23EE401	Digital Electronic Circuits (Integrated Laboratory)	3-0-2	4	5	
PCC	23EE402	Power Electronics	3-0-0	3	3	
IPCC	23EE403	Synchronous and Special Electrical Machines (Integrated Laboratory)	3-0-2	4	5	
IPCC	23EE404	Microcontrollers (Integrated Laboratory)	3-0-2	4	5	
PCC	23EE405	Transformers & Induction Machines Laboratory	0-0-2	1	2	
ETC	23ETC42X	Emerging Technology Course - II	3-0-0	3	3	
HSMC	23UHV4X	Universal Human Values	0-0-2	1	1	
BSC	23BE4X	Biology for Engineers	1-0-0	1	2	
AEC	23AEEE4X	Ability Enhancement Course - IV	0-0-2	1	2	
MC	23NYP4X	NSS/Yoga/PE	0-0-2	Audit	2	
	Total 22 30					

Emerging Technology Courses - II				
23ETEE41	Fuzzy Logic Control	23ETEE43	Python for Electrical Engineers	
23ETEE42	Battery Energy Storage Systems	23ETEE44	Object Oriented Programming with C++	
Ability Enhancement Course - IV				
23AEEE41	Statistics with R	23AEEE43	Integrated Circuit Laboratory	
23AEEE42	Simulation of Digital Electronic Circuits	23AEEE44	IoT Laboratory	

	FIFTH SEMESTER				
Course Category and Course Code		Course Title	L-T-P	Credits	Contact Hours
HSMC	23EE501	Industrial Management and Professional Engineering Practice	4-0-0	4	4
IPCC	23EE502	Linear Control Systems (Integrated Laboratory)	3-0-2	4	5
PCC	23EE503	Power System Analysis and Stability	3-0-0	3	3
PCC	23EE504	Electromagnetic Fields	3-0-0	3	3
PCC	23EE505	Power Electronics Laboratory	0-0-2	1	2
AEC	23RIP5X	Research Methodology & Intellectual Property Rights	3-0-0	3	3
PEC	23EE51X	Professional Elective Course - I	3-0-0	3	3
HSMC	23EVS5X	Environmental Studies	0-2-0	1	2
MC	23NYP5X	NSS/Yoga/PE	0-0-2	Audit	2
	Total 22 27				
The course analytical ability and soft skills 23 ASK will be conducted by the TAP coordinator during the vacation period					

The course analytical ability and soft skills 23ASK will be conducted by the TAP coordinator during the vacation period of fifth semester for one credit. The marks for the same will be entered in sixth semester grade card.

Professional Elective Course – I					
23EE511	Renewable Energy Technology	23EE513	Microcontroller based Embedded System		
23EE512	Testing & commissioning of Electrical equipment	23EE514	Operational Amplifiers and Linear ICs		

SIXTH SEMESTER					
Course Category and Course Code		Course Title	L-T-P	Credits	Contact Hours
PCC	23EE601	Electrical Machine Design	3-0-0	3	3
PCC	23EE602	Modern Control Theory	3-0-0	3	3
PCC	23EE603	Signals and Digital Signal Processing	3-0-0	3	3
PCC	23EE604	Switchgear and Protection	3-0-0	3	3
PEC	23EE62X	Professional Elective Course - II	3-0-0	3	3
OEC	23OEX6X	Open Elective – I	3-0-0	3	3
PI	23PROJ6X	Project Work Phase - I	0-0-4	2	4
PEC	23SW01	SWAYAM - I	0-1(A)-0	Audit	
AEC	23ASK6X	Analytical Ability and Soft Skills	0-0-2	1	2
MC	23NYP6X	NSS/Yoga/PE	0-0-2	Audit	2
Total					26

Professional Elective Course – II				
23EE621	Flexible AC Transmission Systems	23EE623	Smart Grid Technologies	
23EE622	Power System Operation and Control	23EE624	AI in Electrical Engineering	
Open Elective – I				
230EEE61	Basic Power Electronics	230EEE62	Alternate Energy Sources	

		SEVENTH SEMESTER			
Course	e Category and ourse Code	Course Title	L-T-P	Credits	Contact Hours
IPCC	23EE701	Computer Methods in Power Systems (Integrated Laboratory)	3-0-2	4	5
PCC	23EE702	High Voltage Engineering	3-0-0	3	3
PCC	23EE703	Relay and High Voltage Laboratory	0-0-2	1	2
PEC	23EE73X	Professional Elective Course - III	3-0-0	3	3
PEC	23EE74X	Elective -IV (Industry Elective)	1-0-0	1	1
OEC	230EX7X	Open Elective -II	3-0-0	3	3
PI	23PROJ7X	Project Work Phase - II	0-0-8	4	8
MC	23NYP7X	NSS/Yoga/PE	0-0-2	Audit	2
		Total		19	27

	Professional Elective Course – III										
23EE731 Energy Auditing & Demand-Side Management 23EE733 Solar Power Conversion Systems											
23EE732	Automation in Industry 4.0	23EE734	Electrical Power Quality								
	Open Elec	ctive – II									
230EEE71	Smart Grid Technologies	230EEE71	Utilization of Electric Power								

		EIGHTH SEMESTER			
Course Category and Course Code		Course Title	L-T-P	Credits	Contact Hours
PEC	23SW02	Professional Elective (Online Courses) Only through NPTEL - SWAYAM - II		3	12 (weeks)
PI	23INT3	Internship (Research / Industry)	0-0-20	10	20
		Total		13	20

III SEMESTER

Course Title	LINEAR ALGEBRA AND INTEGRAL TRANSFORMS							
Course Code	23MA301	(L-T-P) C	(3-1-0) 3					
CIE	50	Hours/Week	4					
SEE	50	Total Hours	52					

Course Objective: To introduce linear algebra and transform calculus which may be employed as tools in solving engineering application problems.

Course outcomes: At the end of course, student will be able to:

#	Course Outcomes	Mapping to POs	Mapping to PSOs
	Utilise the concept of consistency of system of equations to		
1	solve the engineering application problems and compute the	1.2	-
	number of linearly independent vectors.	1,2	
	Examine for the existence of diagonalization of matrix, find		
2	the suitable matrix of transformations so as to get the		
2	required image and analyze the system of equations to	1,2	-
	compute the number of linearly independent Eigen vectors.	,	
3	Apply Laplace transform on simple functions and compute	1.2	
5	Fourier series of periodic functions.	1,2	-
	Examine for adopting different techniques of integration to		
4	compute Fourier series, Laplace transform of a given	1,2	-
	function.		
5	Model the real-life problems/engineering application	1.2	
5	problems and solve the same.	1,2	-

Course Articulation Matrix

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3													
CO2	3													
CO3	2	3												
CO4	1	2												
CO5	1	3												

MODULE-1

14 Hrs

Linear Algebra: Importance of Matrices in engineering. Rank of a matrix. Consistency of nonhomogeneous and homogeneous system of equations, Solution of the system of linear equations by Gauss elimination method and Gauss – Seidel iterative method.

Special matrices-matrix of rotation, reflection, translation. To find the matrix of transformation when the image of some points is given. Applications of solution of system of equations to balance the chemical equations. **SLC:** Traffic flow problem, to find the suitable combination of food stuff so as to get the desired nutrients as

SLC: Iraffic flow problem, to find the suitable combination of food stuff so as to get the desired nutrients as prescribed by a dietician.

MODULE-2

Linear Algebra: Eigen values and Eigen vectors, properties, Illustrative examples, applications-Stretching of an elastic membrane, to determine the growth of a population model. Role of eigenvalues, eigenvectors in determining natural frequency, mode shapes of equations of motions (Spring mass system). Diagonalization and powers of 3X3 matrices when Eigen values are already given.

SLC: Stability analysis of differential equations which governs the dynamical systems using the concept of eigen value, eigen vectors.

MODULE-3

Fourier Series: Periodic functions and their graphical representation, to find Fourier series by change of interval method, To represent the experimental data as a Fourier series using the method - Practical harmonic analysis.

12 Hrs

application of Fourier series in engineering-To represent the signal (wave form) in terms of Fourier series, Fourier series representation for the excitation described by the wave form, graphs of Fourier series approximating the given function.

SLC: Half range series method.

MODULE-4

12 Hrs

Laplace Transforms: Introduction, Definition, Importance of Laplace transform in engineering applications, properties, Laplace transform of standard functions, Laplace transform of derivatives, Laplace transform of periodic functions, unit-step functions.

Inverse Laplace Transforms: Definition and general properties, Convolution theorem – illustrative examples, Initial value problems. To solve Applications of initial value problems in engineering using Laplace transform **SLC:** Unit impulse functions (Dirac – delta function). Application of Fourier series to Laplace equation, heat conduction.

Note - Theorems and properties without proof. Applicable to all the Modules.

Text books:

- 1. Dr. B. S. Grewal, Higher Engineering Mathematics, Khanna Publications, 44th edition, 2016.
- 2. Linear algebra by David c lay,3rd edition, Pearson education, 2002.

Reference Books:

- 1. R K Jain and S R K Iyengar, Advanced Engineering mathematics by Narosa publishers, 2nd edition, 2005.
- 2. Calculus by Thomas Finney, 9th edition, Pearson education, 2002.
- 3. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley India Pvt. Ltd. 8th Edition (Wiley student edition) 2004.

Course Title	ELECTR	ICAL NETWORK ANA	LYSIS
Course Code	23EE302	(L-T-P) C	(4-1-0) 4
CIE	50	Hours/Week	5
SEE	50	Total Hours	52

Course Objective: To analyze electrical networks using various techniques.

Course outcomes: At the end of course, student will be able to:

#	Course Outcomes	Mapping to POs	Mapping to PSOs
1	Apply basic laws and network theorems to model and analyse DC and AC circuits.	1,2	1
2	Analyse three-phase circuits and resonant circuits under steady state condition.	1,2,3	1
3	Apply initial and final conditions in networks and Laplace transforms for periodic and aperiodic waveforms	1,2	1
4	Analyse electrical networks using Laplace Transforms and two port network models.	1,2,3	1

Course Articulation Matrix

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3											2	
CO2	3	2	3										2	
CO3	3	3											2	
CO4	3	2	3										2	

MODULE-1

13 Hrs

Circuit Analysis: Source transformation, Loop and node analysis with linearly dependent and independent sources for dc and ac networks.

Network Theorems: Superposition, reciprocity, Thevenin's, maximum power transfer, Millman's theorems for dc and ac circuits.

SLC: Dual circuits, Norton's theorem.

MODULE-2

Resonant circuits: Series resonance, quality factor, frequency response, half power frequencies, bandwidth, selectivity, frequency at which VC and VL is maximum. parallel resonance, R-L -C, RL-C and RL-RC circuits. **Three-phase circuits:** Numbering and interconnection of three phases, voltage, currents and power in star and delta connections. Analysis of balanced & unbalanced star and delta connected loads.

SLC: Measurement of active and reactive power.

MODULE-3

13 Hrs

Initial conditions: Integro-differential equations for networks, behaviour of R, L, and C at the instant of switching and at final conditions, initial and final conditions in networks.

Laplace Transforms for waveform synthesis: Waveform synthesis of periodic and aperiodic signals gate function.

SLC: Classical method of analysis for first order circuits.

MODULE-4	13 Hrs
Laplace Transforms for circuit analysis: Concept of transformed impedance, analysis of circuits	by using
transformed network, initial and final value theorems and their applications to networks, transfer f	unctions,
convolution theorem.	
Two Port Networks: Z-parameters, Y-parameters, ABCD-parameters, h-parameters, relationship	o among
parameter sets. Calculation of these parameters for resistive networks.	
SLC: Concept of poles and zeros.	

Tort hashes

- Text books:
 - 1. Charles K. Alexander and Mathew NO Sadiku, Fundamentals of Electric Circuits, TMH, III Edition.
 - 2. Van Valkenburg, Network Analysis, PHI / Pearson Education, 2006.

Reference Books:

- 1. Hayt, Kemmerly and Durbin, Engineering Circuit Analysis, TMH, 6th Edition.
- 2. Roy Choudhury, Networks and Systems, New age Publication, 2nd Edition.
- 3. Smarajit Ghosh, Network Theory: Analysis and Synthesis, PHI, 2005.

Course Title					ANAL	OG El	LECT	RONI	C CIRC	UITS				
Course Code			23EE3	303					(L-T-	• P) C		(3-0-2)	(3-0-2) 4	
CIE			<u>50</u>					Hours/Week				5	• (D)	
SEE	4		50	-1					Total H	ours	64	(40L +	24P)	
Course Objec	tive: To a mes: At th	nalyze	analog	electro	onic cii lent wi	rcuits fo 11 be ab	or diffe	erent ap	plicatio	ns.				
#	С	ourse	Outcor	nes			Μ	Mapping to POs Mappi				ing to PSOs		
1 Employ	the worki	ng prin	ciples o	of diod	es and	BJT to		1	2			2		
know pe	the IEE	e of ele	ctronic	circuit	ts.	ah and		-	,_			_		
2 Analyze amplifie	$\frac{1}{1}$			$\frac{21}{6}$ as				1	,2			2		
3 oscillato	3 oscillators and multistage amplifiers							1	,2			2		
4 Evaluate configur	4 Evaluate Op-Amp based amplifier circuit configurations.					1,2	2,3			2				
			1	Co	ourse A	Articul	ation I	Matrix					1	
$\left \begin{array}{c} POs \\ COs \end{array} \right POs$	O1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2 3												3	
CO2	3 2												2	
CO3	2 3												3	
CO4	2 2	2											2	
					MOD	IILE-1							12 Hrs	
Semiconducto	or Diodes	Intro	luction	to dic	odes. B	Bridge 1	rectifie	r. Clip	pers-Pa	allel cl	ippers: (Clamper	s- positive	
clamping and i	negative c	lampin	g with	out bias	s; Zene	r Diod	e-work	ing and	d charac	teristics	s of Zene	er diode.	- r	
Bipolar Junc	tion Tran	sistors	: Intro	duction	n to B	JT, Bi	asing o	of tran	sistor ai	nd limi	tations c	of biasin	ig, biasing	
divider bias ci	rcuit for C	r; Sell E con ⁻	figurati	on (Ex	act ana	alvsis c	r bias only) u	sing hy	, small s brid mo	odel. RO	couple	d amplif	fier and its	
frequency resp	onse.		-8	(8,		,	I	<u>r</u>		
SLC: Zener d	iode as a	voltage	regula	tor (re	gulatio	n at su	pply si	de and	regulat	ion at l	oad side), Emitte	er follower	
bias circuit and	a its small	signal	anaiysi	is using	g nybri	a moae							10 II.ma	
IEET. Constr	untion Or	arotion	and C	horoot	mon	ULE-2	Ta hi	ning	f EET 1	aina Sa	If bigg o	nd Valte	IU Hrs	
bias circuits fo	r CS confi	guratic	n and C	small	signal	model.	Small	asing o signal	analvsis	of volt	age divid	ler bias	circuits for	
CS configurati	ons, JFET	'worki	ng as a	switch	I.	,		0	5		0			
MOSFET: Ty	pes of M	OSFE	F, Con	structio	on, Op	eration	and (Charac	teristics	of Enh	nanceme	nt type	MOSFET.	
type MOSFET	nancemen	t type I T work	viOSFI	zı usn a switc	ng volt h	age div	vider b	las cire	cuit, Sm	all sign	al mode	1 for en	nancement	
SLC: Biasing	JFET in C	D conf	igurati	on, ope	eration	of Dep	oletion	type M	OSFET					
					MOD	ULE-3							10 Hrs	
Feedback Am	plifiers: H	Feedbac	ek conc	ept &	feedba	ck com	nection	types.						
Oscillators: P	rinciples	of Osc	illators	, Bark	Hause	en's cri	terion,	Phase	shift o	scillator	r- condit	tions for	sustained	
Oscillator & H	requency [artley Osc	of osc: villator	llation	; Wier	i-bridg	e oscil	lator,	Princip	oles of 1	tuned c	scillator	circuit	s- Colpitts	
SLC: Multista	ge amplif	iers, Di	fferent	feedba	ack circ	cuits w	orking	princip	ole, Darl	ington a	amplifie	r.		
					MOD	ULE-4		-					8 Hrs	
Operational A	mplifiers	: Intro	ductior	n, Inver	rting A	mplifie	er, Non	-invert	ing Am	olifier, V	Voltage f	follower,	, Summing	
Amplifier, Dif	ference A	nplifie	r, Integ	rator a	nd Diff	ferentia	tor, ze	ro cros	sing det	ector,.				
SLU: Precisio	n recumers	susing	UTAN	15, 50	iiiiiitt t	ngger (

	Laboratory Co	omponents		24]				
1. Testing of Bridge rectifie	r with and without filter.			·				
2. Testing of Diode parallel	Clipping circuits.							
3. Testing of Diode clampin	g circuits.							
4. Testing of zener diode as	voltage regulator.							
5. Testing of a single stage	BJT based RC coupled amplifi	er and dete	ermination of	frequency response, input				
output characteristics.								
6. Testing of RC phase shift	oscillator and determination of	frequency	of oscillation					
7. Frequency response of In	verting Amplifier using Op-Am	р						
8. Frequency response of No.	on-inverting Amplifier and Volt	age followe	er using op-ar	np 741IC.				
Text books:								
1. Robert L. Boylestad	and Louis Nashelsky, Electroni	c Devices a	and Circuit Th	eory, 11th Edition.				
2. David A Bell, Electr	onic Devices and Circuits, 5th H	Edition.						
Reference Books:								
1. V. K. Mehta and Ro	hit Mehta, Principles of Electron	nics, 11th E	Edition, S. Cha	and & Co.				
2. Jacob Millman and	Christos C. Halkias, Integrated	Electronics	s: Analog and	Digital Circuits and Syste				
TMH, Reprint 2008		T T .	51					
3. Sudhaker Samuel,	U. B. Mahadevaswamy & V	/.Nattarasu,	, Electronic	Circuits, Sanguine Techi				
Publishers.								
Course Title	ELECTRICAL POW	/ER GENI	ERATION A	ND TRANSMISSION				
Course Code	23EE304		(L-T-1	P) C (4-0-0) 4				
CIE	50		Hours/W	eek 4				
SEE	50		Total Ho	ours 52				
Course Objective: To des	cribe the working of generation	n plants ar	nd to analyze	the various aspects of po				
transmission.								
Course outcomes: At the e	nd of course, student will be abl	e to:						
# Cou	rse Outcomes	Mappi	ng to POs	Mapping to PSOs				
1 Describe the construct	ctional details and working of		1	1				
¹ various generating pla	rious generating plants.							
	#11t5.							
2 Analyse various econo	mic aspects of electrical power		12	1				
2 Analyse various econo generation.	omic aspects of electrical power		1,2	1				
2Analyse various econo generation.3Explain the general a	spects of sag and transmission		1,2	1				
2Analyse various econo generation.3Explain the general a line parameters.	spects of sag and transmission		1,2 1,2	1				
2Analyse various econo generation.3Explain the general a line parameters.4Analyze the performant	spects of sag and transmission nee of transmission lines.		1,2 1,2 1,2	1 1 1				
 2 Analyse various econor generation. 3 Explain the general a line parameters. 4 Analyze the performant 	spects of sag and transmission nee of transmission lines. Course Articula	tion Matri	1,2 1,2 1,2 ix	1 1 1				

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3												3	
CO2	2	3											2	
CO3	2	3											3	
CO4	2	3											2	

MODULE-1

Electrical Power Generation: Advantages, disadvantages and site selection for hydro power generation, Thermal power plant, Nuclear power station, wind power plant and solar power plants.

13 Hrs

Hydro Power Generation: Classification of hydroelectric plants, General arrangement and operation, Power station structure & control.

Thermal: Main portions, working, plant layout. **Nuclear Power Station**: Component of reactors, working, safety of nuclear power reactor. **Diesel Electric Station**: Diesel electric plants & component, choice and characteristics, plant layout and maintenance.

Introduction to tidal power plants and geo thermal plants. SLC: Description of Hydro Electrical Power Stations in Karnataka

MODULE-2

Economics Aspects: Introduction, terms used in system operation: diversity factor, load factor, plant capacity factor, plant use factor, plant utilization factor, loss factor, load duration curve, energy load curve, power factor improvement, methods, tariffs, types of tariffs, objectives and requirements of tariff, characteristics of tariff, interconnection of power station, Numerical Examples

SLC: Power Import/port between India and other countries.

MODULE-3

Typical transmission, Standard voltages for Transmission, Advantages of high voltage transmission.

Overhead transmission line: Introduction to transmission tower structures and its classification. Definition of sag, sag calculation in conductors- (a) Suspended on level supports (b) Supports at different levels. Effect of wind and ice.

Line parameter - Inductance: Calculation of inductance of single phase, three phase lines with Equilateral and unsymmetrical spacing.

Line parameter - Capacitance: Capacitance-calculation for two wires and three phase Lines, capacitance calculation for two wires 3-phase lines with equilateral and Unsymmetrical spacing. Numerical Examples. **SLC:** Stringing Chart

MODULE-4

13 Hrs

Power transmission lines: Short and medium lines, Introduction, Classification of overhead transmission lines, Representation of transmission lines, Terms related to performance of transmission lines, Performance analysis of short transmission lines, Medium transmission lines. Generalized circuit constants of nominal T network lines. Long Transmission Lines, Condenser method, nominal T and π representation of medium transmission lines, Representation of long transmission lines.

SLC: Generalized circuit constants of nominal π network lines.

Text books:

1. Chakrabarti A., M.L. Soni, P.V. Gupta and U.S. Bhatnagar, Power System Engineering, Dhanpat Rai & Co. (Pvt.) Ltd., 2003.

Reference Books:

1. S. M. Singh, Electric Power Generation Transmission and Distribution, Prentice Hall of India.

13 Hrs

Course Title TRANSFORMERS & INDUCTION MACHINES Course Code 22EE205														
Course Code		23 E	E305				(L-	T-P) C		(3-0-0)	3			
CIE		5	50				Hours	s/Week		3				
SEE		5	50				Total	Hours		40				
Course Objective: To analy	ze the pe	rforma	nce of	Transf	formers	& Ind	uction N	Aotors.						
Course outcomes: At the en	d of cou	se, stu	dent w	ill be a	ble to:	1			1					
	urse Out	comes	<u> </u>	6	1	Ma	pping to) POs	Map	ping to l	PSOs			
Explain the construction	and wo	orking	of tran	istorme	rs and		1			1				
2 Develop equivalent circo motors.	uits of 1	transfor	mers a	and Ind	duction		1,2			1				
3 Evaluate the performance using various types of test	of transfe data.	ormers	and Ind	luction	motors		1,2,5			1				
4 Solve various types of transformers and Inductio	numerical	proble	ems, w	ith resp	pect to		1,2			1				
	11 11101013	C	ourse A	Articul	ation I	Matrix								
POs PO1 PO2 PC	3 PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2			
CO1 3 CO2 3														
CO1 3 CO2 3 GO2 3														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
CO3 2 3 3 4 2 CO4 1 2 1 1														
MODIII F_1														
Transformers: Construction Principle of transformer ad Transformation ratio, Trans approximate equivalent circu SLC: Auto-transformer: Con	n and Pra etion for former of hit, voltage istruction	ctical c voltag operatic ge regu	conside e trans on und lation, ug of co	erations sforma ler no losses, opper, A	s of 1ph tion, 1o load a power Advanta	hase & deal & nd loa efficie ages/di	3 phase practic d condi ency & A sadvant	core an cal trans ition, Va All-day a ages, M	d shell t sformers ector di efficienc ethods c	cype tran s, EMF agrams, cy. of coolin	sformers, equation, Exact &			
			MOD	ULE-2	2	C		0			10 Hrs			
OC-SC tests - Predeterminat conditions to be satisfied & including open delta. SLC: Special transformers a	ion of eff load sha nd their a	iciency aring. (applica	v & reg Choice tions.	ulation e of co	, Polari nnectic	ity test, on, all	Sumpn types of	er's test 3 phas	, Paralle e transf	l operati ormer c	on– need, onnection			
			MOD	ULE-3	6						10 Hrs			
Induction motors: Basic Classification – 3-phase, So equivalent circuit, losses & o SLC: Construction and work	MODULE-310 HrsInduction motors: Basic concepts, Construction, Concept of rotating magnetic field, Operating principle, Classification – 3-phase, Squirrel cage, Slip ring. Phasor diagram of Induction motor under no load & load, equivalent circuit, losses & efficiency, performance evaluation (HP, Torque, efficiency, current & power factor).SLC: Construction and working principle of various types of single-phase induction motors													
			MOD	ULE-4	ļ						10 Hrs			
Torque-slip characteristics of motoring, Generating & Braking, Induction generator, No load & blocked rotor tests, Circle diagram & performance evaluation, Necessity of starters, DOL, Star -Delta starter, Auto-transformer starting, Rotor resistance starting, Speed control: voltage, frequency & rotor resistance variation. SLC: Applications of three phase and single-phase induction motors														
 Text books: 1. S. Langsdorf, Theory of Alternating Current Machines, 2nd Edition 1993, Tata McGraw Hill Publications. 2. Nagarath and Kothari, Electrical Machines, Tata McGraw Hill Publications. 														
 Reference Books: 1. V. K.Mehta and Rohit Mehta, Electrical Machines, 2nd edition, S. Chand & Co. 2. Ashfaq Husain, Electrical Machines, Dhanapathrai & Co. 														

Course Title	TRANSFORMERS & IN	TRANSFORMERS & INDUCTION MACHINES LABORATORY											
Course Code	23EE405	(L-T-P) C	(0-0-2) 1										
CIE	50	Hours/Week	2										
SEE	50	Total Hours	24										

Course Objective: To demonstrate the operation of transformers and induction machines. **Course outcomes:** At the end of course, student will be able to:

#	Course Outcomes	Mapping to POs	Mapping to PSOs
1	Conduct experimental skills for testing transformers.	1,2,9,10,12	1
2	Evaluate the performance of the Induction machines.	1,2,9,10,12	1
3	Apply the experimental skills for control of induction machines	1,2,9,10,12	1

Course Articulation Matrix

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2							1	1	1		2	
CO2	2	3							1	1	1		2	
CO3	2	2							1	1	1		1	

List of Experiments

- 1. SC & OC test 1-phase transformer & predetermination of efficiency & regulation for different loads & PFs; verification by direct loading for UPF.
- 2. Sumpner's test.
- 3. Polarity test and parallel operation of two dissimilar 1-phase transformers.
- 4. Connection of three 1-phase transformers in star-delta and determination of efficiency & regulations for balanced direct loading (UPF).
- 5. Load test on 3-phase Induction motor performance evaluation (Torque-speed, BHP-efficiency, BHP-PF, slip-BHP).
- 6. No load and Blocked rotor test on three-phase slip ring IM: Circle Diagram of 3 phase Induction Motorperformance evaluation.
- 7. Determination of equivalent circuit parameters of 1- phase induction motor-performance evaluation.
- 8. Speed control of 3-phase Induction motor-Stator voltage control & rotor resistance control (performance circuits for at least two different voltages/two rotor resistance valves).
- 9. Load test on Induction generator and performance calculations.
- 10. Load test on 1-phase Induction motor.

ENGINEERING SCIENCE COURSES – II

Course Code 23FESEE31 (L-T-P) C (3-0-0) 3 CIE 50 Hours/Week 3 SEE 50 Total Hours 40 Course Objective: Learn about the construction, working principles and applications of various measurinstruments. Mapping to POs Mapping to PSo 1 Analyze the various techniques to measure different 1,2 2 2 Apply measurement principles for obtaining the performance 1,2 2 2 Apply measurement principles for obtaining the performance 1,2 2 4 Explain the working principle of electromechanical and digital 1,2 2 4 Explain the fundamental concepts of measuring instruments. 1,2 1 2 COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO12 PS01 PS02 CO1 3 2 Image: Cole 1 1 2 2 CO3 3 3 Image: Cole Image: Cole Image: Cole 2 2 </th <th>С</th> <th>our</th> <th>se Tit</th> <th>le</th> <th></th> <th></th> <th></th> <th>ELI</th> <th>ECTR</th> <th>ICAL</th> <th>AND E</th> <th>ELEC</th> <th>TRONI</th> <th>CS MEA</th> <th>ASURE</th> <th>MENTS</th> <th></th> <th></th>	С	our	se Tit	le				ELI	ECTR	ICAL	AND E	ELEC	TRONI	CS MEA	ASURE	MENTS		
CIE 50 Hours/Week 3 SEE 50 Total Hours 40 Course Objective: Learn about the construction, working principles and applications of various measure Instruments. Course outcomes: At the end of course, student will be able to: Image: Course Articulation Matrix A Explain the working principle of POS	С	our	se Co	de				23E	SEE31					(L-T-P) C	(3-0-	-0) 3	
SEE 50 Total Hours 40 Course Objective: Learn about the construction, working principles and applications of various measuring instruments. Total Hours Image: Course outcomes: At the end of course, student will be able to: # Course outcomes: At the end of course, student will be able to: Mapping to POs Mapping to POs Mapping to POs 1 Analyze the various techniques to measure different parameters of various types of bridges. 1,2 1 2 Apply measurement principles for obtaining the performance in regiming instruments. 1,2 2 3 Explain the fundamental concepts of measuring instruments. 1,2 1 4 Explain the fundamental concepts of measuring instruments. 1,2 1 CO1 3 2 0 1 2 CO3 3 2 0 0 1 2 CO3 3 2 0 0 0 1 2 CO3 3 3 0 0 0 0 0 1 CO3 3 3 0 0 0 0 0 0 2 CO3 3 3 0 0 0 0 0 0 2 CO4 3 2	С	IE							50				H	ours/W	eek	3	3	
Course Objective: Learn about the construction, working principles and applications of various measure instruments. Course Outcomes Mapping to POs Mapping to POs Mapping to POs # Alarye the various techniques to measure different 1,2 1 2 Apply measurement principles for obtaining the performance 1,2 2 3 measuring instruments. 1,2 2 4 Explain the working principle of electromechanical and digital 1,2 2 Course Articulation Matrix Course Articulation Matrix MODULE-1 10 PO1 PO2 PS01 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO11 PO12 PS02 CO1 3 2 0 0 0 0 1 2 CO2 3 3 0 0 0 0 1 2 CO3 3 2 0 0 0 0 1 2 CO3 3 2 0 0 0 1 <td>S</td> <td>EE</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>50</td> <td></td> <td></td> <td></td> <td>Т</td> <td>'otal Ho</td> <td>urs</td> <td>4</td> <td>0</td> <td></td>	S	EE							50				Т	'otal Ho	urs	4	0	
Course outcomes: student will be able to: # Course Outcomes Mapping to POs Mapping to POs 1 Analyze the various techniques to measure different 1,2 1 2 Apply measurement principles for obtaining the performance 1,2 2 3 Explain the working principle of clectromechanical and digital 1,2 2 4 Explain the fundamental concepts of measuring instruments. 1,2 1 Cool 3 2 0 1 COO 3 2 0 1 2 COI 3 2 0 1 2 2 CO3 3 3 0 0 1 1 2 CO3 3 3 0 0 1 1 2 CO3 3 3 0 0 1 1 2 CO4 3 2 0 0 1 1 1 MODULE-1 10 H MODULE-1 10 H MODULE-1	C Ir	our Istru	se Ob ments	jectivo	e: Lea	rn abo	out the	constr	ruction	, work	ing pr	incip	es and a	applicati	ons of	various	measurii	ng
# Course Outcomes Mapping to POs Mapping to POs 1 Analyze the various techniques to measure different 1,2 1 2 Apply measurement principles for obtaining the performance 1,2 2 3 Explain the working principle of electromechanical and digital 1,2 2 4 Explain the fundamental concepts of measuring instruments. 1,2 1 CO0 3 2 0 0 011 PO12 PS01 PS02 CO1 3 2 0 0 0 1 0 2 CO3 3 3 0 0 0 0 1 0 2 CO3 3 3 0 0 0 0 1 0 2 CO4 3 2 0 0 0 0 1 0 2 CO3 3 3 0 0 0 0 1 0 2 CO4 3 2 0 0 0 0 1 1 0 0	C	our	se out	comes	: At th	e end c	of cours	se, stud	lent wi	ll be at	ole to:					•		٦
Analyze the various techniques to measure different 1,2 1 Parameters of measuring instruments. 1,2 2 3 Explain the working principle of electromechanical and digital measuring instruments. 1,2 2 4 Explain the fundamental concepts of measuring instruments. 1,2 2 CON PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 CO1 3 2 Image: Construction of the con		#	A 1	.1			urse O	utcom	es		1:00		Mappir	ng to PO	s Ma	pping to	o PSOs	_
2 Apply measurement principles for obtaining the performance inclusion of the principle of electromechanical and digital measuring instruments. 1,2 2 3 Explain the working principle of electromechanical and digital measuring instruments. 1,2 1 4 Explain the fundamental concepts of measuring instruments. 1,2 1 Course Articulation Matrix 0 0 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 CO1 3 2 0 0 0 0 1 1 CO2 3 3 0 0 0 0 2 2 CO3 3 3 0 0 0 0 1 1 MODULE-1 0 0 0 2 2 CO4 3 2 0 0 0 2 2 CO4 3 2 0 0 0 1 1 MODULE-1 10 H Mosurement of Resistanc		1	Analy paran	neters	ne va of mea	rious suring	techni instrun	ques nents.	to m		diffe	rent	1	,2		1		
3 Explain the working principle of electromechanical and digital measuring instruments. 1.2 2 4 Explain the fundamental concepts of measuring instruments. 1.2 1 Course Articulation Matrix POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS01 PS02 PS01 PS02 PS01 PS02 PS01 PS01 PS02 PS01 PS02		2	Apply paran	y meas	of vario	nt prin ous typ	ciples es of b	for obt ridges.	aining	the pe	rforma	ince]	,2		2		
4 Explain the fundamental concepts of measuring instruments. 1,2 1 Course Articulation Matrix POs COs COs COs COs CO1 3 2 CO2 3 3 2 CO3 3 3 2 CO4 3 2 CO4 3 2 CO4 3 2 CO4 CO3 3 2 CO4 CO3 3 2 CO4 CO4 3 2 CO4 CO4 3 2 CO4 CO4 CO4 3 2 CO4 CO4 CO4 3 2 CO4 CO4 CO4 3 2 CO4		3	Expla meas	ain the uring i	workir nstrum	ng prine ents.	ciple of	felectr	omech	anical	and dig	gital	1	,2		2		
Course Articulation Matrix POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 CO1 3 2 1 1 1 1 1 1 CO2 3 3 1 1 1 1 2 2 CO3 3 3 1 1 1 1 2 2 CO4 3 2 1 1 1 1 1 1 MODULE-1 IO H Measurement of Resistance, Inductance and Capacitance: DC bridges: Wheatstone's bridge- sensitiv 10		4	Expla	in the	fundar	nental	concep	ots of m	neasuri	ng inst	rument	ts.]	,2		1		
POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 CO1 3 2 1 1 1 1 1 1 CO2 3 3 1 1 1 1 1 2 CO3 3 3 1 1 1 1 1 2 CO4 3 2 1 1 1 1 1 1 MODULE-1 1 <td></td> <td><u> </u></td> <td></td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td>Co</td> <td>ourse A</td> <td>Articul</td> <td>ation I</td> <td>Matri</td> <td>ix</td> <td></td> <td>1</td> <td>1</td> <td>ſ</td> <td>7</td>		<u> </u>			1	1	1	Co	ourse A	Articul	ation I	Matri	ix		1	1	ſ	7
CO1 3 2 1 CO2 3 3 1 2 CO3 3 3 1 2 CO4 3 2 1 2 CO4 3 2 1 1 MODULE-1 10 H MODULE-2 10 H MODULE-3 10 H Construction, the oy we operation, two wattmeter and three wattmeter methods of measuring power, measurem of reactive power. Single phase induction type energy meter: construction and working principle, error adjustments, and illustrative examples. 10 H SLC: Digital power factor and frequency meters. <td></td> <td>C</td> <td>POs Os</td> <td>PO1</td> <td>PO2</td> <td>PO3</td> <td>PO4</td> <td>PO5</td> <td>PO6</td> <td>PO7</td> <td>PO8</td> <td>POS</td> <td>PO10</td> <td>PO11</td> <td>PO12</td> <td>PSO1</td> <td>PSO2</td> <td></td>		C	POs Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	POS	PO10	PO11	PO12	PSO1	PSO2	
CO2 3 3 2 2 CO3 3 3 2 2 CO4 3 2 1 2 CO4 3 2 1 1 MODULE-1 10 MODULE-2 10 MODULE-3 10 MODULE-3 10 Ectrodynamometer type wattmete construction, theory & operation, two wattmeter and three wattmeter methods of measuring power, measurement MODULE-3 10		CO	D1	3	2											1		
CO3 3 3 1 1 1 CO4 3 2 1 1 1 MODULE-1 10 H Measurement of Resistance, Inductance and Capacitance: DC bridges: Wheatstone's bridge- sensitiv limitations. Kelvin's double bridge, Illustrative Examples. Earth resistance measurement by fall of potent method. AC Bridges: Sources & Detectors, Anderson's bridge, Schering bridge. Illustrative Examples. Extensis of instrument ranges using Shunts and multipliers. Instrument transformers: Construction and operating princi of CT and PT, Application of CT and PT. Illustrative examples. SLC: Megger and measurement of earth resistance. 10 H MODULE-2 10 H Measurement of Power, Energy, Power Factor and Frequency: Electrodynamometer type wattmet construction, theory & operation, two wattmeter and three wattmeter methods of measuring power, measureme of reactive power. Single phase induction type energy meter: construction and working principle, error adjustments, and illustrative examples. 10 H Electronic and Digital Instruments: Introduction. Essentials of electronic instruments, Advantages of electroi instruments. Analog to digital converter, resolution, quantization error, True rms reading voltmeter. Digit voltmeters (DVM): Ramp type DVM, Integrating type DVM and Successive approximation DVM. Digital ener meter. Digital Maximum demand indicator. SLC: Digital multimeters. 10 H Oscilloscopes: Block diagram of a general-purpose oscilloscope, working principle, Signal Generators a Function Generators. Sensors: Temperature sensor and strain gauge. 10 H <td></td> <td>CO</td> <td>D2</td> <td>3</td> <td>3</td> <td></td> <td>2</td> <td></td>		CO	D2	3	3												2	
CO4 3 2 1 MODULE-1 10 H Measurement of Resistance, Inductance and Capacitance: DC bridges: Wheatstone's bridge- sensitiv limitations. Kelvin's double bridge, Illustrative Examples. Earth resistance measurement by fall of potent method. AC Bridges: Sources & Detectors, Anderson's bridge, Schering bridge. Illustrative Examples. Extensi of instrument ranges using Shunts and multipliers. Instrument transformers: Construction and operating princi- of CT and PT, Application of CT and PT. Illustrative examples. SLC: Megger and measurement of earth resistance. 10 H Measurement of Power, Energy, Power Factor and Frequency: Electrodynamometer type wattmet construction, theory & operation, two wattmeter and three wattmeter methods of measuring power, measureme of reactive power. Single phase induction type energy meter: construction and working principle, error adjustments, and illustrative examples. SLC: Digital power factor and frequency meters. 10 H Electronic and Digital Instruments: Introduction. Essentials of electronic instruments, Advantages of electro- instruments. Analog to digital converter, resolution, quantization error, True rms reading voltmeter. Digit voltmeters (DVM): Ramp type DVM, Integrating type DVM and Successive approximation DVM. Digital ener meter. Digital Maximum demand indicator. SLC: Digital multimeters. 10 H MODULE-4 10 H Oscilloscopes: Block diagram of a general-purpose oscilloscope, method of measuring amplitude, pha frequency, period, use of Lissajous patterns, Digital Storage Oscilloscope-working principle, Signal Generators a Function Generators. Sensors: Temperature sensor and strain gauge.		CO3 3 3 2 CO4 3 2 1																
MODULE-110 HMeasurement of Resistance, Inductance and Capacitance: DC bridges: Wheatstone's bridge- sensitivlimitations. Kelvin's double bridge, Illustrative Examples. Earth resistance measurement by fall of potentmethod. AC Bridges: Sources & Detectors, Anderson's bridge, Schering bridge. Illustrative Examples. Extensiof instrument ranges using Shunts and multipliers. Instrument transformers: Construction and operating princiof CT and PT, Application of CT and PT. Illustrative examples.SLC: Megger and measurement of earth resistance.MODULE-210 HMeasurement of Power, Energy, Power Factor and Frequency: Electrodynamometer type wattmetconstruction, theory & operation, two wattmeter and three wattmeter methods of measuring power, measuremof reactive power. Single phase induction type energy meter: construction and working principle, erroradjustments, and illustrative examples.SLC: Digital power factor and frequency meters.MODULE-310 HElectronic and Digital Instruments: Introduction. Essentials of electronic instruments, Advantages of electrorinstruments. (DVM): Ramp type DVM, Integrating type DVM and Successive approximation DVM. Digital enerwoltmeters.MODULE-410 HOscilloscopes: Block diagram of a general-purpose oscilloscope, method of measuring amplitude, phafrequency, period, use of Lissajous patterns, Digital Storage Oscilloscope-working principle, Signal Generators aFunction Generators. Sensors: Temperature sensor and strain gauge.		CO4 3 2 1																
Measurement of Resistance, Inductance and Capacitance: DC bridges: Wheatstone's bridge- sensitiv. limitations. Kelvin's double bridge, Illustrative Examples. Earth resistance measurement by fall of potent method. AC Bridges: Sources & Detectors, Anderson's bridge, Schering bridge. Illustrative Examples. Extensi of instrument ranges using Shunts and multipliers. Instrument transformers: Construction and operating principle of CT and PT, Application of CT and PT. Illustrative examples. SLC: Megger and measurement of earth resistance. 10 H Measurement of Power, Energy, Power Factor and Frequency: Electrodynamometer type wattmete construction, theory & operation, two wattmeter and three wattmeter methods of measuring power, measurement of reactive power. Single phase induction type energy meter: construction and working principle, error adjustments, and illustrative examples. SLC: Digital power factor and frequency meters. 10 H Electronic and Digital Instruments: Introduction. Essentials of electronic instruments, Advantages of electroi instruments. Analog to digital converter, resolution, quantization error, True rms reading voltmeter. Digit voltmeters (DVM): Ramp type DVM, Integrating type DVM and Successive approximation DVM. Digital enermeter. Digital Maximum demand indicator. 10 H Oscilloscopes: Block diagram of a general-purpose oscilloscope, method of measuring amplitude, pha frequency, period, use of Lissajous patterns, Digital Storage Oscilloscope-working principle, Signal Generators a Function Generators. Sensors: Temperature sensor and strain gauge.		MODULE-1 10 Hrs																
MODULE-210 HMeasurement of Power, Energy, Power Factor and Frequency: Electrodynamometer type wattmet construction, theory & operation, two wattmeter and three wattmeter methods of measuring power, measureme of reactive power. Single phase induction type energy meter: construction and working principle, error adjustments, and illustrative examples.10 HSLC: Digital power factor and frequency meters.10 HMODULE-310 HElectronic and Digital Instruments: Introduction. Essentials of electronic instruments, Advantages of electron instruments. Analog to digital converter, resolution, quantization error, True rms reading voltmeter. Digital voltmeters (DVM): Ramp type DVM, Integrating type DVM and Successive approximation DVM. Digital ener meter. Digital Maximum demand indicator.10 HSLC: Digital multimeters.10 HOscilloscopes: Block diagram of a general-purpose oscilloscope, method of measuring amplitude, pha frequency, period, use of Lissajous patterns, Digital Storage Oscilloscope-working principle, Signal Generators a Function Generators. Sensors: Temperature sensor and strain gauge.10 H	N li m of S	leas mita etho fins fCT LC:	tions. od. AC trumer and P Megg	ent of Kelvin C Bridg nt rang T, App ger and	Resis n's do ges: So es usin blicatio measu	tance, uble b ources g Shum on of C uremen	Induc ridge, & Dete ts and t T and I t of ear	tance Illustra ectors, 1 multipl PT. Illu th resi	and C ative E Anders liers. In strative stance.	Capaci Example son's br nstrum e exam	tance: es. Ear ridge, S nent tra ples.	DC rth re Scher ansfo	bridges: sistance ing bridg rmers: C	Wheats measure e. Illustr construct	stone's fement by ative Ex-	bridge- y fall of amples. operatin	sensitivi f potenti Extensio g princip	ty, ial on ole
Measurement of Power, Energy, Power Factor and Frequency: Electrodynamometer type wattmete construction, theory & operation, two wattmeter and three wattmeter methods of measuring power, measurement of reactive power. Single phase induction type energy meter: construction and working principle, error adjustments, and illustrative examples. SLC: Digital power factor and frequency meters. 10 H Electronic and Digital Instruments: Introduction. Essentials of electronic instruments, Advantages of electronic instruments. Analog to digital converter, resolution, quantization error, True rms reading voltmeter. Digital voltmeters (DVM): Ramp type DVM, Integrating type DVM and Successive approximation DVM. Digital energy meter. Digital Maximum demand indicator. 10 H MODULE-4 10 H Oscilloscopes: Block diagram of a general-purpose oscilloscope, method of measuring amplitude, pha frequency, period, use of Lissajous patterns, Digital Storage Oscilloscope-working principle, Signal Generators a Function Generators. Sensors: Temperature sensor and strain gauge.									MOD	ULE-2							10 H	rs
MODULE-310 HElectronic and Digital Instruments: Introduction. Essentials of electronic instruments, Advantages of electronic instruments. Analog to digital converter, resolution, quantization error, True rms reading voltmeter. Digit voltmeters (DVM): Ramp type DVM, Integrating type DVM and Successive approximation DVM. Digital ener meter. Digital Maximum demand indicator.Digital Converter, resolution, quantization error, True rms reading voltmeter. Digital ener meter. Digital Maximum demand indicator.Image: Digital Converter, resolution, quantization error, True rms reading voltmeter. Digital ener meter. Digital Maximum demand indicator.Image: Digital Converter, resolution, quantization error, True rms reading voltmeter. Digital ener meter. Digital multimeters.MODULE-4Image: Digital Converter, Digital Storage Oscilloscope, method of measuring amplitude, pha frequency, period, use of Lissajous patterns, Digital Storage Oscilloscope-working principle, Signal Generators a Function Generators. Sensors: Temperature sensor and strain gauge.Image: DistributeDigital Storage Oscilloscope-working principle, Signal Generators a Function Generators. Sensors: Temperature sensor and strain gauge.	N co oi ao S	Measurement of Power, Energy, Power Factor and Frequency: Electrodynamometer type wattmeter: construction, theory & operation, two wattmeter and three wattmeter methods of measuring power, measurement of reactive power. Single phase induction type energy meter: construction and working principle, errors, adjustments, and illustrative examples. SLC: Digital power factor and frequency meters																
Electronic and Digital Instruments: Introduction. Essentials of electronic instruments, Advantages of electronic instruments. Analog to digital converter, resolution, quantization error, True rms reading voltmeter. Digital voltmeters (DVM): Ramp type DVM, Integrating type DVM and Successive approximation DVM. Digital energy meter. Digital Maximum demand indicator. SLC: Digital multimeters. MODULE-4 10 H Oscilloscopes: Block diagram of a general-purpose oscilloscope, method of measuring amplitude, pha frequency, period, use of Lissajous patterns, Digital Storage Oscilloscope-working principle, Signal Generators a Function Generators. Sensors: Temperature sensor and strain gauge.									MOD	ULE-3	5						10 H	rs
MODULE-410 HOscilloscopes: Block diagram of a general-purpose oscilloscope, method of measuring amplitude, pha frequency, period, use of Lissajous patterns, Digital Storage Oscilloscope-working principle, Signal Generators a Function Generators. Sensors: Temperature sensor and strain gauge.	E in vo m S	Electronic and Digital Instruments: Introduction. Essentials of electronic instruments, Advantages of electronic instruments. Analog to digital converter, resolution, quantization error, True rms reading voltmeter. Digital voltmeters (DVM): Ramp type DVM, Integrating type DVM and Successive approximation DVM. Digital energy meter. Digital Maximum demand indicator. SLC: Digital multimeters.																
Oscilloscopes: Block diagram of a general-purpose oscilloscope, method of measuring amplitude, pha frequency, period, use of Lissajous patterns, Digital Storage Oscilloscope-working principle, Signal Generators a Function Generators. Sensors: Temperature sensor and strain gauge.									MOD	ULE-4							10 H	rs
SLC: Position and Proximity sensors. Text books:	0 fr F S T	eque unct LC: ext	loscop ency, p tion Ge Positi books	bes: B beriod, enerato ion and	lock d use of ors. Sei l Proxi	liagram Lissajo nsors: ' mity se	n of a ous patt Temper ensors.	gener terns, I rature s	ral-purp Digital sensor	pose o Storage and str	scilloso e Oscil ain gau	cope, losco ige.	method pe-worki	of meang princ	asuring iple, Sig	amplitu nal Gene	de, phas erators a	se, nd

- 1. A. K. Sawhney, Electrical and Electronic Measurements and Instrumentation, Dhanpatrai and Sons, New Delhi.
- 2. Cooper D. and A.D. Heifrick, Modern Electronic Instrumentation and Measuring Techniques, PHI.

Reference Books:

- 1. Golding and Widdies, Electrical Measurements and Measuring Instruments, Pitman.
- 2. David A. Bell, Electronic Instrumentation and Measurement, 2nd Edition, PHI, 2006.

Course Title	INTRODUCTION TO PLC										
Course Code	23ESEE32	(L-T-P) C	(3-0-0) 3								
CIE	50	Hours/Week	3								
SEE	50	Total Hours	40								

Course Objective: To Apply the concept of electrical ladder logic, its history, and its relationship to programmed PLC instruction.

Course outcomes: At the end of course, student will be able to:

#	Course Outcomes	Mapping to POs	Mapping to PSOs
1	Analyze the hardware components and internal architecture of PLC systems to configure both desktop and PC-based setups effectively.	1, 2	2
2	Develop and program ladder logic for various applications using functionalities of different sensors and actuators.	1, 2, 3	2
3	Apply ladder programming and flowchart-based designs to solve practical control problems.	2, 3, 5	2

					C	ourse A	rticul	ation N	latrix					
POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3												3
CO2	2	3	3											2
CO3		3	3		3									3

MODULE-1

10 Hrs

Introduction to PLC: Programmable logic controller hardware and internal architecture, PLC systems basic configuration and development, desktop and pc configured system, ladder logic, programming, PLC connections, ladder logic inputs and outputs, sourcing, sinking, and electrical wiring diagram

SLC: Case study to develop a relay based controller that will allow three or more switches in a room to control a single light.

MODULE-2

Logical Sensors and Actuators: Sensors wiring, contact switches, Reed switches, Photoelectric sensors, capacitive sensors, Inductive sensors, Ultrasonic, hall effect, fluid flow, solenoids, valves, cylinders, Hydraulics, Pneumatics, motors

SLC: Interface of encoder device to PLC.

MODULE-3

Ladder and functional block programming: Introduction, Ladder diagrams, Logic functions, Latching, Multiple outputs, Entering programs, Function blocks, Program examples.

SLC: Applications of PLC in controlling different motors

MODULE-4

PLC operation: Introduction, operation sequence, PLC status, memory types, Software based PLCs. Flowchart based design: Introduction, Block logic, sequence bits, problems SLC: Use a flow chart to design a parking gate controller

Text books:

1. W. Bolten, "Programmable Logic Controllers", Elsevier Publication, Oxford UK

10 Hrs

10 Hrs

2. Hugh Jack, "Automating manufacturing systems with PLCs", Version 4.6

Reference Books:

- 1. E.A Paar, "Programmable Controllers-An Engineers Guide", Newness publication
- 2. Johnson Curties, "Process Control Instrumentation Technology", 8th edition, Prentice hall of India
- 3. L.A Bryan and E.A Bryan, "Programmable Controller Theory and Applications"
- 4. John W Webb, Ronald Reis, "Programmable logic controller's principle and application", Pearson publication

Course Title	SENSORS		
Course Code	23ESEE33	(L-T-P) C	(3-0-0) 3
CIE	50	Hours/Week	3
SEE	50	Total Hours	40

Course Objective: To discuss the principle of various Transducers, their construction, applications and principles of operation, standards and units of measurements.

Course outcomes: At the end of course, student will be able to:

#	Course Outcomes	Mapping to POs	Mapping to PSOs
1	Understand the terminology of Instrumentation and analyze various sensors.	1,2	1
2	Apply signal conditioning for measurements.	1,2	1
3	Explain various measurements techniques for industrial applications based on transducers.	1,2	1

Course Articulation Matrix

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2											3	
CO2	2	3											3	
CO3	3	3											3	

MODULE-1

10 Hrs

Strain and Pressure: Mechanical strain, Interferometry, Fibre optic methods, pressure gauges, low gas pressures, Ionization gauges, Transducer use.

Position, direction, distance, and motion: Position, Direction, Distance measurement, Distance travelled, Accelerometer systems, Rotation.

SLC: Introduction to Electronics Measurement and Instrumentation

MODULE-2

Light and associated radiation: Nature of light, Colour temperature, Light flux, Photosensors, Photoresistors and photoconductors, Photodiodes, Phototransistors, Photovoltaic devices, Fibre – optic applications, Light transducers, Solid-state transducers, Liquid crystal displays (LCD), Light valves, Image transducers, Radio waves. **SLC:** Analog Signal Conditioning

MODULE-3

Temperature sensors and thermal transducers: Heat and temperature, The bimetallic strip, Liquid and gas expansion, Thermocouples, Metal – resistance sensors, Thermistors, Radiant heat energy sensing, Pyroelectric detectors, Thermal transducers, Thermal to electrical transducers.

SLC: Resistance Vs Temperature characteristics for different materials.

MODULE-4

Sound, infrasound and ultrasound: Principles, Audio electrical sensors and transducers, Electrical to audio transducers.

SLC: Digital Signal Conditioning.

Text books:

1. Sensors and Transducers Ian R. Sinclair Newnes 3 rd Edition, 2001

10 Hrs

10 Hrs

Reference Books:

- 1. Nakamura, K. (Ed.). (2012). Ultrasonic transducers: Materials and design for sensors, actuators and medical applications. Elsevier.
- 2. Murty, D. V. S. (2010). Transducers and instrumentation. PHI Learning Pvt. Ltd.
- 3. Stefanescu, D. M. (2011). Handbook of force transducers: principles and components. Springer Science & Business Media.
- 4. Boyes, W. (Ed.). (2009). Instrumentation reference book. Butterworth-Heinemann.

Course Title	IoT AND ITS APPLICATIONS												
Course Code	23ESEE34	(L-T-P) C	(3-0-0) 3										
CIE	50	Hours/Week	3										
SEE	50	Total Hours	52 (40L+12P)										

Course Objective: To develop sustainable solutions for real time applications.

Course outcomes: At the end of course, student will be able to:

#	Course Outcomes	Mapping to POs	Mapping to PSOs
1	Describe the concepts of IoT and its applications.	1,2	2
2	Analyse requirements of various communication models for design of IoT applications on different IoT platforms.	1,2,5	2
3	Apply the concept of Internet of Things in real world scenario.	1,2,5	2
4	Build prototypes for real time applications using Arduino/NodeMCU/raspberry pi	1,2,5	2

Course Articulation Matrix

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3												2
CO2	3	2			2									2
CO3	3	2			2									2
CO4	3	2			2									2

MODULE-1

10 Hrs

10 Hrs

10 Hrs

Introduction to IoT: Understanding IoT fundamentals, IOT Architecture, protocols, Various Platforms for IoT, Real time Examples of IoT, Overview of IoT components and IoT Communication Technologies. Introduction, Sensor, Types of Sensors, Actuators, classification of Actuators.

SLC: History of IoT, Modern Applications of IoT

MODULE-2

IoT with Arduino: Introduction to the Arduino, Creating an Arduino programming Environment, Using the Arduino IDE, Creating an Arduino program, Using Libraries, Working with Digital Interfaces, Interfacing with Analog devices, Adding Interrupts, Communicating with devices, Using sensors, Working with Motors, Using an LCD.

SLC: How to connect Arduino to the Internet, Arduino IoT Applications.

MODULE-3

IoT with NodeMCU: ESP8266 WiFi Serial Module: Overview, Setting Up the Hardware, Interfacing with Arduino, Creating an IoT Temperature and Humidity Sensor System, Overview of DHT-22 Sensor, Interfacing the Hardware: Arduino, ESP8266 WiFi Module, and DHT-22 Sensor, Checking Your Data via ThingSpeak, Connecting Your Arduino Set-up to Blynk via WiFi

SLC: How to Communicate Two NodeMCU's for Home Automation, NodeMCU IoT Applications.

MODULE-4

IoT with Raspberry Pi: IoT Physical Devices & Endpoints: Raspberry Pi, About the Board, Linux on Raspberry Pi, Raspberry Pi Interfaces, Programming Raspberry Pi with Python, Controlling LED with Raspberry Pi, Interfacing an LED and Switch with Raspberry Pi, Interfacing a Light Sensor (LDR) with Raspberry Pi. **SLC:** .NET IoT with Single Board Computers and Raspberry Pi.

Text books:

- 1. Vijay Madisetti and Arshdeep Bahga, Internet of Things (A Hands-on-Approach), 1st Edition, VPT, 2016.
- 2. Richard Blum, Arduino Programming in 24 Hours, Sams Teach Yourself, Pearson Education, 2017.

Reference Books:

- 1. Jain, Prof. Satish, Singh, Shashi, Internet of Things and its Applications, 1st Edition, BPB, 2020.
- 2. Donald Norris, Internet of things_do-it-yourself projects with Arduino, Raspberry Pi, and Beagle Bone Black, 1st Edition, McGraw-Hill,2015
- 3. Adeal Javed Lake Zurich, Illinois, Building Arduino Projects for the Internet: Experiments with Real-World Applications, 1st Edition, USA, A press, 2016.
- 4. Yashavant Kanetkar, Shrirang Korde, 21 IOT Experiments, 1st Edition, BPB Publications, 2018.
- 5. Dr. Rajesh Singh, Dr. Anita Gehlot, Dr. Lovi Raj Gupta, Navjot Rathour, Mahendra Swain, Bhupendra Singh, IoT based Projects Realization with Raspberry Pi, NodeMCU and Arduino, 1 st Edition, BPB Publications, 2020.

Web link:

- 1. https://www.arduino.cc/reference/en
- 2. https://create.arduino.cc/projecthub
- 3. https://maker.pro/raspberry-pi/tutorial
- 4. https://projects.raspberrypi.org/en/projects

5. https://www.digikey.com/en/maker/blogs/2019/how-to-use-mqtt-with-the-raspberry-pi

List of Experiments

- 1. LED Blinking using Arduino
- 2. Servo Motor Interfacing and Control using Arduino
- 3. Smart SunLight detection using Arduino
- 4. IoT Controlled LED using ESP32 with Blynk App
- 5. IoT based Fire Alarm System using NodeMCU ESP8266
- 6. Interfacing ultrasonic sensor using Raspberry Pi Pico W Microcontroller

Course Title	SOCIAL C	SOCIAL CONNECT & RESPONSIBILITY												
Course Code	23SCR3X	(L-T-P) C	(0-0-2) 1											
CIE	100	Hours/Week	2											
SIE	-	Total Hours	20											

Course Objective: Provide a formal platform for students to communicate and connect with their surroundings and create a responsible connection with society.

Course outcomes: At the end of course, student will be able to:

#	Course Outcomes	Mapping to POs	Mapping to PSOs
	Describe societal challenges and build solutions to alleviate		
1	these complex social problems through immersion, design &	3,5,6	-
	technology.		
2	Communicate and connect with their surroundings.	7,12	-

Course Articulation Matrix

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1			3		2	3								
CO2							3					3		

MODULE-1

5 Hrs

12Hrs

Plantation and adoption of a tree: Plantation of a tree that will be adopted by a group of students. They will also make an excerpt either as a documentary or a photo blog describing the plant's origin, its usage in daily life, and its appearance in folklore and literature.

	0 111 5
Heritage walk and crafts corner: Heritage tour, knowing the history and culture of the city, connecting to	o people
around through their history, knowing the city and its craftsman, photoblog and documentary on evolut	ion and
practice of various craft forms.	

MODULE-3

MODULE-4

MODILE_2

Organic farming and waste management: Usefulness of organic farming, wet waste management in neighboring villages, and implementation in the campus.

Water Conservation: knowing the present practices in the surrounding villages and implementation in the campus, documentary or photo blog presenting the current practices. Food Walk City's culinary practices, food lore, and indigenous materials of the region used in cooking.

Course Conduction

A total of 15-20 hours engagement per semester is required for the course. Students will be divided into teams and each team will be handled by two faculty mentors. Faculty mentors will design the activities for evaluation.

Guideline for Assessment Process:

Continuous Internal Evaluation (CIE)

After completion of, the social connect, the student shall prepare, with daily diary as reference, a comprehensive report in consultation with the mentor/s to indicate what he has observed and learned in the social connect period. The report should be signed by the mentor. The report shall be evaluated on the basis of the following criteria and/or other relevant criteria pertaining to the activity completed.

- Dairy recording the details of activity conducted
- Planning and scheduling the social connect
- Information/Data collected during the social connect
- Analysis of the information/data and report writing

Considering all above points allotting the marks as mentioned below

	<u> </u>
Excellent	80 to 100
Good	60 to 79
Satisfactory	40 to 59
Unsatisfactory and fail	<=39

Web Link:

1. https://onlinecourses.nptel.ac.in/noc24_hs167/preview

5 Hrs

5 Hre

ABILITY ENHANCEMENT COURSES – III

C	mrs	se Titl	e						ELEC	FRIC	CIRCI		ABOR	ATORY				
C	ours	se Coo	le				23 A	EEE3	<u>51</u>		ente		(L-T-I	P) C	(0-0-	·2) 1		
C	E							100				He	ours/W	eek	2			
SF	ΕE					-					Total Hours				2	4		
Co Co	ours ours	se Obj se out	jective comes	To pr At the	actice a e end c	nd anal of cours	yze des se, stud	ign of e lent wil	electric o ll be ab	circuits le to:	using r	network t	heorem	s.				
	#			С	ourse	Outcor	nes			M	apping	to POs		Mappi	ng to PS	SOs		
1Apply basic laws and network theorems to analyse given circuit.1,2,5,9											5,9			2				
	2 Demonstrate the experimental skills to meas resistance, inductance, capacitance and power										1,2,5	5,9			2			
	3 Practice design of electrical and electronics circuit through simulation.										1,2,5,9					2		
,					r		Co	ourse A	Articula	ation N	Aatrix			-				
	CC	POs Ds	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
Ī	CC)1	3	3			1				2					2		
Ī	CC	02	2	3							2					2		
	CC	03	2	1			3				1					2		
								List	of Expe	erimen	ts							
	1 2 3 4 5 6 7	. Res . Res . Ver . Ver . Ver . Ver . Ver	sonanc onanc ificatio ificatio ificatio ificatio	e chara e chara on of K on of T on of N on of el on of M	icterist icterist iCL & iherem iorton's ictrical	ics of s ics of p KVL f ins' the s theore circuit 's theor	eries c barallel for mul corem. em. proble rem	ircuits. circuit ti-loop ems usi	s. electri ng Supe	cal cire	cuits, w	vith inde orem.	pender	nt DC sou	irces.			

- 8. Verification of Maximum Power transfer theorem.
- 9. Transient response of R-L-C series electric circuit.
 10. Transient response of R-L-C parallel electric circuit.

Course Title	ELECTRICAL ENGINEEF	ELECTRICAL ENGINEERING PRACTICES LABORATORY												
Course Code	23AEEE32	(L-T-P) C	(0-0-2) 1											
CIE	100	Hours/Week	2											
SEE	-	Total Hours	24											
Course Objective:	To provide exposure to the students w	ith hands on experi	ience on various Electrical											

Course Objective: To provide exposure to the students with hands on experience on various Electrical Engineering practices.

Course outcomes: At the end of course, student will be able to:

#	Course Outcomes	Mapping to POs	Mapping to PSOs
1	Learn the residential wiring and various types of wiring.	1,2	1
2	Measure the various electrical quantities.	1,2	1
3	Know the necessity and types of earthing and measurement of earth resistance.	1,2	1

Course Articulation Matrix

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3											3	
CO2	3	3											3	
CO3	3	3											3	

List of Experiments

1. Fluorescent lamp wiring

2. Stair case wiring

3. Residential house wiring using fuse, switch, indicator, lamp and energy meter

4. Measurement of resistance to earth of electrical equipment

5. Soldering and desoldering practice.

Course Title	ELECTRICAL	ELECTRICAL MEASUREMENTS LABORATORY										
Course Code	23AEEE33	(L-T-P) C	(0-0-2) 1									
CIE	100	Hours/Week	2									
SEE		Total Hours	24									

Course Objective: To create practical insight about economic operation of power systems, hence study several intricate issues involved.

Course outcomes: At the end of course, student will be able to:

#	Course Outcomes	Mapping to POs	Mapping to PSOs
1	Demonstrate the skills to apply error calculation to analyse single phase and three phase energy meter.	1,2,3,9	1
2	Demonstrate the experimental skills to measure resistance, inductance, capacitance and power.	1,2,4,12	1
3	Analyse the measurement error and reliability of electrical measuring equipment.	1,2,6,7	1

Course Articulation Matrix

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	3						1				1	
CO2	1	2										2		2
CO3	1	2				1	2						1	

List of Experiments

- 1. Measurement of single phase power and power factor.
- 2. Measurement of three phase power using two wattmeter method in star and delta connected system.
- 3. Determination of errors in single-phase energy meter.
- 4. Measurement of power and power factor using three-phase energy meter.
- 5. Measurement of low resistance using Kelvin's double bridge.
- 6. Measurement of resistance using Wheatstone bridge.
- 7. Measurement of inductance and determination of Q-factor.
- 8. Measurement of capacitance and determination of dissipation factor using Schering Bridge.
- 9. Calibration of current transformer.
- 10. Calibration of potential transformer.

Course Title	RENEWABLE ENERGY LABORATORY								
Course Code	23AEEE34	(L-T-P) C	(0-0-2) 1						
CIE	100	Hours/Week	2						
SEE	-	Total Hours	24						

Course Objective: To simulate and demonstrate the performance of renewable energy systems. **Course outcomes:** At the end of course, student will be able to:

COL	Jui se outcomes. At the end of course, student will be able to.														
7	¥		C	ourse	Outco	mes			M	apping	to POs		Mappin	ig to PS	Os
	1 Plot the characteristics and performance of PV modules.					7	1,2,5,7,9			2					
	2 Simulate renewable energy and power electronic converter.					2	1,2,5,7,9			2					
	Analyse renewable energy system connected to grid.				•	1,2,5,7,9			2						
						Co	ourse A	Articul	ation I	Matrix					
(POs COsPO1PO2PO3PO4PO5PO6PO7							PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
(CO1	3	3			2		2		2					2
(CO2	3	3			3		2		2					2
(CO3	3	3			3		2		2					2

List of Experiments

1.	I-V & P-V	Characteristics	of solar PV	cell/modules.
----	-----------	-----------------	-------------	---------------

2. Voltage & current enhancement through Series /Parallel connected solar PV cell/module.

3. Performance of PV cell/ module under partial shading conditions.

4. MPPT technique

5. Experimental analysis of solar cooker and solar water heating system

6. Simulation of solar PV Fed induction motor/BLDC motor

7. Simulation of partial shading effects on solar PV array

8. Simulation of Buck, Boost converters, resonant converters systems

9. Integrated renewable energy system for on/off grid applications using software tools

10. Energy audit and demand side management using software tools

11. Motor speed control using power modulators-open/closed

IV SEMESTER

Course Title DIGITAL ELECTRONIC CIRCUITS																	
С	ours	se Co	de			23EE	C 401						(L-T-I	P) C		(3-0-2) 4	
С	IE					50	0					H	lours/W	/eek		5	
S	EE					50)						Fotal Ho	ours	64 ((40L + 2)	4P)
С	ours	se Ob	jective	: To a	pply lo	gic de	sign m	ethods	for the	analys	sis o	f d	igital log	gic circu	its.		
C	ours	se out	tcomes	: At th	$\frac{1}{2}$ end $\frac{1}{2}$	of cour	se, stu	dent wi	ill be a	ble to:			<u>.</u> .	(DO		• 4	DCO
	#	Deres		factor		irse O	utcom	es	-f	1.		N	Aapping	to POs	Mar	oping to	PSOs
	1	devic	es.	Teatu	res, Tur	ictionin	ig and	utility	of var	ious iog	gic		1,2	2		2	
	2	Expla	ain vario	ous MS	I and L	SI com	ponents	5					1,2	2		2	
	3	Desci Coun	bescribe the principles of Latches and Flip-flops, Registers and 1,2 2														
	4	Deve Meal	lop state v and M	e diagra loore N	ums and Iodels.	Synch	ronous	Sequen	tial Cir	cuits usi	ing		1,2	2		2	
I			,				Co	ourse A	rticul	ation N	Mat	rix					
Ĩ		POs	DO1	DOJ	DOJ		DOS		DO7		DC	0	DO10	DO11	DO12	DCO1	DCO2
-	$\frac{CO}{CO}$	s 1	2	2	PO3	PO4	P05	P06	PO/	P08	PC	<i>.</i>	POIO	POIT	POIZ	PSOI	2
-	$\frac{co}{co}$	1	3	2													3
-		2	2	3													2
-	$\frac{co}{co}$	3 1	2	2													2
	CU	4	Z	3													Z
								MOD	ULE-1								10 Hrs
ne ca Pi M Sl	etwo inon rime fax t LC:	rks. F ical fo Impl erm e Quin	Realizat orms, C icants a equation e-McC	tion of Genera and Ess ns, Qu luskey	a logic tion of sential ine-Mc using	cal fun switch Prime Cluske don't o	ction u ing equ Implica ey min care ter	sing or uations ants, In imizati rms	nly NA from t compl on tecl	ND and ruth tal etely sp nnique,	d N bles becit Ma	OR , K fiec ıp-l	gates. I arnaugh functio Entered	Definitio maps-3 ns (Don Variable	on of con ,4,5 vari 't care to s	mbinatio ables, Ir erms) Si	nal logic, nplicants, mplifying
								MOD	ULE-2	1							10 Hrs
L C P1 m S	ogic omp ogra emo LC:	Desi arato amma ories (Field	ign wi rs. Dec ıble Lc PROM PROM	th MS oders. ogic D S). Pro ummat	SI Con Logic evices ogrammole Gat	npone desigr -Progra nable l e Array	nts: Ba n using ammab Logic A y (FPG	inary a decod le Log Arrays (A).	ndders ers. E1 gic Dev (PLAS	and su ncoders vices (1). Prog	ıbtra s. M PLE ram	acto lult)). ma	ors. Loo fiplexers PLD no able Arra	k ahead Logic otation; y Logic	l adder. design v progran (PAL)	Decima with mul nmable devices.	al adders. tiplexers. read-only
								MOD	ULE-3								10 Hrs
F fle tr bi Sl	Flip-flops and applications: S-R latch and Gated S-R latch. Gated D latch. Pulse triggered master-slave S-R flip flop. The master-slave J-K flip-flop. Edge-triggered flip-flop; Positive edge-triggered D flip-flop; Negative edge-triggered D flip-flops. Characteristic equations of flip-flops. Registers. Binary ripple counters. Synchronous binary counters. Counters based on shift registers.																
	MODULE-4 10 Hrs																
Se co Se Si	eque ounte eque LC:	ential er usi ntial Appl	Circui ng cloc circuit ication	i t Desi cked E analys s of M	gn: De), T or is, Cor ealy ar	sign of S-R fl structi nd Moc	f synch ip-flop on of s ore moe	ronous os. Mea state dis dels	s count aly and agrams	ers usir l Moore s, count	ng cl e m ter c	loc ode lesi	ked J-K els, State ign.	flip-flop e machi	os. Desig ne notat	gn of syn ion, Syn	ichronous ichronous
							La	borato	ory Co	mpone	nts				24 I	Irs	
1 2	 Simplification, realization of Boolean expressions using logic gates/Universal gates. Realization of half adder and full adder circuits. 																

- 3. Realization of Binary to Gray code conversion and vice versa.
- 4. Testing of Ring counter and Johnson counter.
- 5. Design of Sequence generator using D-flip flops.
- 6. Truth table verification of flip-flops: (i) J K Master slave (ii) T type and (iii) D type.
- 7. Realisation of SISO, SIPO, PISO, PIPO shift registers.
- 8. Truth table verification of 1-bit and 2-bit comparator.

Text books:

- 1. Donald D. Givone, Digital Principles and Design, Tata Mc-Graw Hill, 2002.
- 2. Digital Logic Applications and Design, John M Yarbrough, Thomson Learning, 2001

Reference Books:

1. R. D. Sudhakar Samuel, Logic Design – A Simplified Approach, Sanguine Technical Publishers, 2005.

Course Title		POWER ELECTRONICS	
Course Code	23EE402	(L-T-P) C	(3-0-0) 3
CIE	50	Hours/Week	3
SEE	50	Total Hours	40

Course Objective: To design suitable power electronic converter for an application. **Course outcomes:** At the end of course, student will be able to:

#	Course Outcomes	Mapping to POs	Mapping to PSOs
1	Explain the fundamental concepts of power electronic	1	2
1	converters.	1	Σ
2	Explain the basic principles of various power electronic	1	2
2	converters and their characteristics.	1	Σ
,	Apply power electronics principles for obtaining the	1.2	2
)	performance parameters of various types of converters.	1,2	Σ
1	Analyze the performance parameters of various power	1.2	2
ł	electronic converters	1,2	2

Course Articulation Matrix

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3													2
CO2	3													2
CO3	2	3												2
CO4		2												2

MODULE-1

Introduction to power electronics, classification of power electronic devices & converters, peripheral effects. **Power Transistors:** Power MOSFETs (n channel enhancement type MOSFET) – structure, switching characteristics, IGBT- structure, necessity of isolation in power transistor circuits, Isolation techniques. **Thyristors:** Structure of SCR, V-I characteristics, two transistor model of SCR, turn-on and turn-off, di/dt and dv/dt protection, Thyristor firing circuits (RC half wave and full wave triggering, UJT triggering. **SLC:** V-I characteristics of DIAC, TRIAC & GTO.

MODULE-2

Controlled Rectifiers: Introduction, Principle of Phase control, single-phase semi converter (RL load), single-phase full converter (RL load), single-phase dual converter (RL load), three-phase half wave converters (R load, No problems).

AC Voltage Controllers: Introduction, Principle of on-off control, single phase bi-directional controller with R & RL loads.

SLC: Applications of controlled rectifiers and AC voltage controllers.

MODULE-3

10 Hrs

10 Hrs

DC-DC Converters: Introduction, step-down (buck) converter, Analysis of step-down converter for R, RL & RLE loads, step-up (boost) converter, Control strategies. Full-bridge chopper (Class E) and multi-quadrant operation. Comparison of DC-DC converters.

SLC: Applications of DC-DC converters.

MODULE-4

10 Hrs

Inverters: Introduction, **Single-phase inverters:** Single-phase half bridge inverters, performance parameters, single-phase bridge inverters, Voltage control of single-phase inverters: single-pulse-width modulation (PWM), Multiple PWM, Sinusoidal PWM, **Three phase Inverters:** 180-degree conduction, Voltage control of three phase inverters: Sinusoidal pulse width modulation and space vector modulation. **SLC:** Applications of Inverters.

Text books:

- 1. M.H. Rashid, Power Electronics, 4th edition, Pearson, 2014.
- 2. Ned Mohan, Power Electronics, Wiley, 2007.

Reference Books:

- 1. Joseph Vithyathil, Power Electronics Principles and Applications, Tata Mcgraw Hill, 2010.
- 2. P.S. Bimbhra, Power Electronics, Khanna Publishers, 2018.

С	Course Title SYNCHRONOUS AND SPECIAL ELECTRICAL MACHINES																
С	our	se Co	de		23	EE403	3		(L-T-P) C			(3-0-2)	4		
С	IE					50			Ho	urs/We	eek			5			
S	EE					50			To	tal Ho	urs			52			
C	our	se Ob	jective	: To A	nalyze	differe	ent type	es of sy	nchron	nous m	achine	s and s	pecial e	lectrical	machine	es.	
C	our	se out	comes	: At th	e end c	of cours	se, stud	lent wi	ll be at	ole to:							1
# Course Outcomes Mapping to POs Mapping to PSOs								SOs									
	1	Inter	pret th	e conc	epts of	synchr	onous	machi	nes.	_		1,2			2		
	2	Expl	ain the	e princ	iple op	peration	n of sp	ecial e	electric	al		1.2			2		
	machines.)							
3 Analyze the performance of Synchronous						ous ma	achines	3		1,2			2				
		and	special	electri	cai ma	chines.	Cr			adian I	1 a Amir]
		DOa						Jurse P	Articul	ation	viatrix					<u> </u>	٦
	C	PUS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
		$\frac{\sqrt{3}}{\sqrt{1}}$	3	2												2	-
		$\frac{1}{2}$	2	2												2	-
		$\frac{12}{2}$	2	2												2	-
	C)3	3	Z												2]
								MOD	ULE-1	-						10 H	rs
S	ncł	irono	us Ma	chines	: Basic	e princ	iples o	f operation	ation, o	constru	ction of	of salien	t & noi	n-salient	pole sy	nchronc	us
m	achi	nes, C	Generat	ed EM	F cons	idering	the eff	fect of o	distribu	ution ar	nd shor	t chordi	ng of wi	nding, c	auses of	harmon	ics
a	id it	s elim	ination	i, slot ł	narmon	ics, me	ethods	of redu	cing sl	ot harr	nonics	. Numer	ical Pro	blems.			
S.	LC:	Diffe	rent ty	pes of	windin	gs.											
								MOD	ULE-2							10 H	rs
V	olta	ge Re	gulatio	on: Arı	nature	reactic	on, reas	sons for	r voltag	ge drop	os in sy	nchronc	ous mac	hines, El	MF, MM	F & ZP	F
m	ethc	ds of	determ	nining	voltage	regula	tions,	compar	rative s	studies.	Nume	erical Pro	oblems				
SLC: ASA method of Voltage regulation.																	
MODULE-3 10 Hrs																	
Salient pole Synchronous Machines: Salient pole synchronous machines, Two reaction theory, concept of Xd &																	
X	q, p	hasor	diagra	am, Po	ower o	utput,	Power	angle	diagra	am, Re	eluctan	ce pow	er, Slip	test. Sy	nchroni	zation of	of
A	Alternator with infinite bus bar, Parallel operation of alternators, synchronising current, synchronising power,																
E	Effect of change of excitation and input power, Load sharing, Numerical Problems.																

SLC: Hunting in synchronous machines, Damper winding's. **MODULE-4** 10 Hrs Special Machines: Introduction, Variable Reluctance Stepper Motor, Permanent Magnet Stepper Motor, Hybrid Stepper Motor, Windings in Stepper Motors, working principle, Torque Equation, Applications of Stepper Motor Classifications of permanent magnet motors, Construction and working principle of Permanent Magnet DC (PMDC) motor, Brushless Permanent Magnet DC (BLDC) Motors, **SLC:** Applications of permanent magnet motors. Text books: 1. P. S. Bhimbra, Electric Machinery, Khanna Publishers. 2. I. J. Nagrath & D. P. Kothari, Electric machines, 3rd edition, TMH. 3. Janardhanan E.G. Special Electrical Machines, PHI **Reference Books:** 1. A. S. Langsdorf, Theory of Alternating Current Machines, 2nd Edition 1993, Tata McGraw Hill Publications. 2. V. K. Mehta and Rohit Mehta, Electrical Machines, 2nd edition, S. Chand & Co. 3. N. N parker Smith, Problems in Electrical Engineering, CBS publishers. 4. K Venkataratnam, Special Electrical Machines, University Press. List of Experiments 12 Hrs. Part A: Assembly Level Programming 1. OC and SC Test and predetermination of Voltage Regulation of Alternator by EMF and MMF methods. 2. Voltage regulation of an alternator by zero power factor method.

- 3. Determination of Xd , Xq & regulation of a salient pole alternator by Slip rest
- 4. Performance of synchronous generator connected to infinite bus, constant power-variable excitation & vice versa
- 5. V and inverted V curves of a synchronous motor.
- 6. Speed control of Stepper motor and Permanent magnet motors.

Course Title		MICROCONTROLLERS					
Course Code	23EE404	(L-T-P) C	(3-0-2) 4				
CIE	50	Hours/Week	5				
SEE	50	Total Hours	52 (40L+12P)				
Course Objective: To develop programming skills on 8051 microcontroller and interfacing techniques.							

Course outcomes: At the end of course, student will be able to:

#	Course Outcomes	Mapping to POs	Mapping to PSOs
1	Learn fundamentals of microprocessors and	1	r
	microcontroller.	1	2
2	Interpret the Instruction set of 8051 microcontrollers.	1,2	2
3	Develop assembly level programming and embedded C	1235	2
	programming on 8051 microcontrollers.	1,2,3,5	Δ.
4	Apply the skill of interfacing 8051 with various peripherals	1 2 2	2
	used for various applications.	1,2,5	2

Course Articulation Matrix

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3													2
CO2	3	3	3											2
CO3	3	3	3		2									2
CO4	2	3	3											2
	•	•	•	•	•		•		•	•	•	•	•	

MODULE-1	10 Hrs
----------	--------

Introduction: Introduction to Microprocessors, Microcontroller and Microc	computer, 8051 Microcon	ntroller:
Simple block diagram of 8051, Pin details of 8051 and their functions, Architect	ure of 8051-ALU, CPU re	egisters,
Stack and SP, Oscillator and Reset circuit, Internal Memory Organization of	1 8051 - RAM, Special 1	function
Programming 9051 Microsontrollory Instruction Set of 9051 Oncode fetch	from DOM Instruction	orranda
operand Different addressing modes of 8051	Hom KOW, mstruction,	opeoue,
SI C: Different types of memory applications of Microprocessors and Microco	ntrollers	
MODUL E-2		10 Hrs
Classification of 9051 Instructional Data transfer instructions and mean minimum	a vaina data transfor instr	IUIIIS
Logical instructions Byte level logical Operations, rotate and Swap Operation	ig using data transfer listr	Logical
instructions. Bit Manipulation Instructions- Bit addressable area in interna	al RAM Bit addressable	SFRs
programming using Bit Manipulation Instructions Arithmetic Instruction	ons- Flags, Incrementi	ng and
Decrementing, Addition, Subtraction, Multiplication and Division, Decim	al Adjust, programming	g using
Arithmetic Instructions.	5 / 1 0 2	
SLC: Code conversions and Programming on code conversions, Programming	using subroutines.	
MODULE-3		10 Hrs
Branching instructions: Classification of Jump and Call instructions, Diff	ference between Jump a	nd Call
instructions, , programming using Branching instructions, Programming using i	ndexing and looping on 8	-bit and
16-bit data, Subroutines.		
8051 Programming in C: Basics of C Programming- Structure of C, Data	a types and time delay i	n 8051,
Programming 8051 timers in C- Basics of Timers, Timer 0 and Timer 1 registers	s, Different modes of Time	er-Mode
0, Mode 1 and Mode 2 Programming, Counter programming- Different modes of	f Counters, Mode 2 Progra	imming.
SLC: Timer Mode 3 Programming in C, Counter mode 0 and 1 programm	ning in C, Programming	internal
interrupts in C.		
MODULE-4		10 Hrs
8051 Serial Port Programming in C. Basics of Serial Communication Serial		0051
bush Schart of the rogramming in C. Dasies of Schar Communication, Schar	Communication Register	rs, 8031
connections to RS-232, 8051 Serial Port Programming in C. Basics of Interrupt	ts in 8051, Programming e	external
connections to RS-232, 8051 Serial Port Programming in C. Basics of Interrupt hardware interrupts in C.	ts in 8051, Programming	external
connections to RS-232, 8051 Serial Port Programming in C. Basics of Schal Communication, Schal hardware interrupts in C. Interfacing Techniques: Introduction to I/O Ports, Relays and Opto-isolator	ts in 8051, Programming e	external acing,
connections to RS-232, 8051 Serial Port Programming in C. Basics of Interrupt hardware interrupts in C. Interfacing Techniques: Introduction to I/O Ports, Relays and Opto-isolator Keyboard interfacing, DAC interfacing, Sensor interfacing, 4 step sequence S	ts in 8051, Programming e tinterfacing, LCD interfa Stepper Motor interfacing	external acing, g, DC
connections to RS-232, 8051 Serial Port Programming in C. Basics of Schal Communication, Schal hardware interrupts in C. Interfacing Techniques: Introduction to I/O Ports, Relays and Opto-isolator Keyboard interfacing, DAC interfacing, Sensor interfacing, 4 step sequence S motor interfacing using PWM.	ts in 8051, Programming e tinterfacing, LCD interfactors Stepper Motor interfacing	external acing, g, DC
 connections to RS-232, 8051 Serial Port Programming in C. Basics of Serial Communication, Serial hardware interrupts in C. Interfacing Techniques: Introduction to I/O Ports, Relays and Opto-isolator Keyboard interfacing, DAC interfacing, Sensor interfacing, 4 step sequence Smotor interfacing using PWM. SLC: 8 step sequence Stepper Motor interfacing, Seven segment LED Display 1 	ts in 8051, Programming e ts interfacing, LCD interfa Stepper Motor interfacing	external acing, g, DC
 connections to RS-232, 8051 Serial Port Programming in C. Basics of Serial Connection, Serial Port Programming in C. Basics of Interrupt hardware interrupts in C. Interfacing Techniques: Introduction to I/O Ports, Relays and Opto-isolator Keyboard interfacing, DAC interfacing, Sensor interfacing, 4 step sequence Section interfacing using PWM. SLC: 8 step sequence Stepper Motor interfacing, Seven segment LED Display I Text books: Kenneth Avala. The 8051 Microcontroller. 3rd Edition. Thomson Learning 	ts in 8051, Programming of ts interfacing, LCD interfactor Stepper Motor interfacing Interfacing.	external acing, g, DC
 connections to RS-232, 8051 Serial Port Programming in C. Basics of Serial Connection, Serial Fort Programming in C. Basics of Interrupt hardware interrupts in C. Interfacing Techniques: Introduction to I/O Ports, Relays and Opto-isolator Keyboard interfacing, DAC interfacing, Sensor interfacing, 4 step sequence S motor interfacing using PWM. SLC: 8 step sequence Stepper Motor interfacing, Seven segment LED Display I Text books: Kenneth Ayala, The 8051 Microcontroller, 3rd Edition, Thomson Learning, MA Mazidi, J G Mazidi and R D Mckinlay. The 8051 Microcontroller and R D Mckinlay. 	ts in 8051, Programming e ts interfacing, LCD interfacing Stepper Motor interfacing Interfacing. ing, 2007. and Embedded Systems Us	external acing, g, DC
 connections to RS-232, 8051 Serial Port Programming in C. Basics of Interrupt hardware interrupts in C. Interfacing Techniques: Introduction to I/O Ports, Relays and Opto-isolator Keyboard interfacing, DAC interfacing, Sensor interfacing, 4 step sequence S motor interfacing using PWM. SLC: 8 step sequence Stepper Motor interfacing, Seven segment LED Display I Text books: Kenneth Ayala, The 8051 Microcontroller, 3rd Edition, Thomson Learning. M A Mazidi, J G Mazidi and R D Mckinlay, The 8051 Microcontroller a Assembly and C. 2nd Edition, Prentice Hall India, 2007. 	ts in 8051, Programming e ts interfacing, LCD interfa Stepper Motor interfacing Interfacing. ing, 2007. and Embedded Systems Us	sing
 connections to RS-232, 8051 Serial Port Programming in C. Basics of Schalt Connection, Schalt Conne	ts in 8051, Programming e e interfacing, LCD interfa Stepper Motor interfacing Interfacing. ing, 2007. and Embedded Systems Us	external acing, g, DC
 connections to RS-232, 8051 Serial Port Programming in C. Basics of Schal Communication, Schal Connection, Schal Communication, Schal Connection, Schal Communication, Schal Connection, Schal Communication, Schal Communication, Schal C. Basics of Interrupt hardware interrupts in C. Interfacing Techniques: Introduction to I/O Ports, Relays and Opto-isolator Keyboard interfacing, DAC interfacing, Sensor interfacing, 4 step sequence Scott interfacing using PWM. SLC: 8 step sequence Stepper Motor interfacing, Seven segment LED Display I Text books: Kenneth Ayala, The 8051 Microcontroller, 3rd Edition, Thomson Learning, Assembly and C, 2nd Edition, Prentice Hall India, 2007. Reference Books: Myke Predko, Programming & Customizing 8051 the Microcontroller, Text Display I Scott Press (Seven Segment India). 	Communication Register ts in 8051, Programming of interfacing, LCD interfacing Stepper Motor interfacing Interfacing. Interfacing. ing, 2007. Ind Embedded Systems Us Tata MGH.	sing
 connections to RS-232, 8051 Serial Port Programming in C. Basics of Interrupt hardware interrupts in C. Interfacing Techniques: Introduction to I/O Ports, Relays and Opto-isolator Keyboard interfacing, DAC interfacing, Sensor interfacing, 4 step sequence S motor interfacing using PWM. SLC: 8 step sequence Stepper Motor interfacing, Seven segment LED Display I Text books: Kenneth Ayala, The 8051 Microcontroller, 3rd Edition, Thomson Learni M A Mazidi, J G Mazidi and R D Mckinlay, The 8051 Microcontroller a Assembly and C, 2nd Edition, Prentice Hall India, 2007. Reference Books: Myke Predko, Programming & Customizing 8051 the Microcontroller, 7 	Communication Register ts in 8051, Programming of interfacing, LCD interfacing Stepper Motor interfacing Interfacing. Interfacing. ing, 2007. and Embedded Systems Us Tata MGH. 12 Hrs.	sing
 connections to RS-232, 8051 Serial Port Programming in C. Basics of Berlar Communication, Berlar connections to RS-232, 8051 Serial Port Programming in C. Basics of Interrupt hardware interrupts in C. Interfacing Techniques: Introduction to I/O Ports, Relays and Opto-isolator Keyboard interfacing, DAC interfacing, Sensor interfacing, 4 step sequence Semotor interfacing using PWM. SLC: 8 step sequence Stepper Motor interfacing, Seven segment LED Display I Text books: Kenneth Ayala, The 8051 Microcontroller, 3rd Edition, Thomson Learner 2. M A Mazidi, J G Mazidi and R D Mckinlay, The 8051 Microcontroller a Assembly and C, 2nd Edition, Prentice Hall India, 2007. Reference Books: Myke Predko, Programming & Customizing 8051 the Microcontroller, 7 	Communication Register ts in 8051, Programming of interfacing, LCD interfacing Stepper Motor interfacing Interfacing. Interfacing. ing, 2007. and Embedded Systems Us Fata MGH. 12 Hrs.	sing
connections to RS-232, 8051 Serial Port Programming in C. Basics of Bernar Communication, Bernar Connections to RS-232, 8051 Serial Port Programming in C. Basics of Interrupt hardware interrupts in C. Interfacing Techniques: Introduction to I/O Ports, Relays and Opto-isolator Keyboard interfacing, DAC interfacing, Sensor interfacing, 4 step sequence Stepper Motor interfacing, Seven segment LED Display I Text books: Kenneth Ayala, The 8051 Microcontroller, 3rd Edition, Thomson Learnin 2. M A Mazidi, J G Mazidi and R D Mckinlay, The 8051 Microcontroller a Assembly and C, 2nd Edition, Prentice Hall India, 2007. Reference Books: Myke Predko, Programming & Customizing 8051 the Microcontroller, T List of Experiments Part A: Assembly Level Programming Simple programs using mainly data transfer instructions: Block move, Exch	Communication Register ts in 8051, Programming of interfacing, LCD interfacing Stepper Motor interfacing Interfacing. Interfacing. ing, 2007. Ind Embedded Systems Us Fata MGH. 12 Hrs. nange, Finding largest and	sing smallest
connections to RS-232, 8051 Serial Port Programming in C. Basics of Serial Commutation, Serial connections to RS-232, 8051 Serial Port Programming in C. Basics of Interrupt hardware interrupts in C. Interfacing Techniques: Introduction to I/O Ports, Relays and Opto-isolator Keyboard interfacing, DAC interfacing, Sensor interfacing, 4 step sequence Second motor interfacing using PWM. SLC: 8 step sequence Stepper Motor interfacing, Seven segment LED Display I Text books: Kenneth Ayala, The 8051 Microcontroller, 3rd Edition, Thomson Learner M A Mazidi, J G Mazidi and R D Mckinlay, The 8051 Microcontroller a Assembly and C, 2nd Edition, Prentice Hall India, 2007. Reference Books: Myke Predko, Programming & Customizing 8051 the Microcontroller, 7 List of Experiments Part A: Assembly Level Programming Simple programs using mainly data transfer instructions: Block move, Exchelement in an array.	Communication Register ts in 8051, Programming of interfacing, LCD interfacing Stepper Motor interfacing Interfacing. Interfacing. ing, 2007. and Embedded Systems Us Fata MGH. 12 Hrs. ange, Finding largest and	sing smallest
connections to RS-232, 8051 Serial Port Programming in C. Basics of Interrupt hardware interrupts in C. Interfacing Techniques: Introduction to I/O Ports, Relays and Opto-isolator Keyboard interfacing, DAC interfacing, Sensor interfacing, 4 step sequence S motor interfacing using PWM. SLC: 8 step sequence Stepper Motor interfacing, Seven segment LED Display I Text books: Kenneth Ayala, The 8051 Microcontroller, 3rd Edition, Thomson Learning M A Mazidi, J G Mazidi and R D Mckinlay, The 8051 Microcontroller a Assembly and C, 2nd Edition, Prentice Hall India, 2007. Reference Books: Myke Predko, Programming & Customizing 8051 the Microcontroller, 7 List of Experiments Part A: Assembly Level Programming Simple programs using mainly data transfer instructions: Block move, Exchelement in an array. Programs involving arithmetic operations like addition, subtraction, multiplication	 Communication Register ts in 8051, Programming e interfacing, LCD interfacing Interfacing. Interfacing. ing, 2007. and Embedded Systems Us Fata MGH. 12 Hrs. ange, Finding largest and lication and division, squal 	sing smallest are, cube
 connections to RS-232, 8051 Serial Port Programming in C. Basics of Interrupt hardware interrupts in C. Interfacing Techniques: Introduction to I/O Ports, Relays and Opto-isolator Keyboard interfacing, DAC interfacing, Sensor interfacing, 4 step sequence S motor interfacing using PWM. SLC: 8 step sequence Stepper Motor interfacing, Seven segment LED Display I Text books: Kenneth Ayala, The 8051 Microcontroller, 3rd Edition, Thomson Learning 2. M A Mazidi, J G Mazidi and R D Mckinlay, The 8051 Microcontroller a Assembly and C, 2nd Edition, Prentice Hall India, 2007. Reference Books: Myke Predko, Programming & Customizing 8051 the Microcontroller, T List of Experiments Simple programs using mainly data transfer instructions: Block move, Exch element in an array. Programs involving arithmetic operations like addition, subtraction, multiplice of 8 bit data bytes. 	I Communication Register ts in 8051, Programming of ts interfacing, LCD interfacing Stepper Motor interfacing Interfacing. ing, 2007. ind Embedded Systems Us Fata MGH. 12 Hrs. hange, Finding largest and lication and division, square	sing smallest are, cube
connections to RS-232, 8051 Serial Port Programming in C. Basics of Serial Connutineation, Serial connections to RS-232, 8051 Serial Port Programming in C. Basics of Interrupt hardware interrupts in C. Interfacing Techniques: Introduction to I/O Ports, Relays and Opto-isolator Keyboard interfacing, DAC interfacing, Sensor interfacing, 4 step sequence Semotor interfacing using PWM. SLC: 8 step sequence Stepper Motor interfacing, Seven segment LED Display I Text books: Kenneth Ayala, The 8051 Microcontroller, 3rd Edition, Thomson Learning M A Mazidi, J G Mazidi and R D Mckinlay, The 8051 Microcontroller a Assembly and C, 2nd Edition, Prentice Hall India, 2007. Reference Books: Myke Predko, Programming & Customizing 8051 the Microcontroller, 7 List of Experiments Part A: Assembly Level Programming Simple programs using mainly data transfer instructions: Block move, Exchelement in an array. Programs involving arithmetic operations like addition and subtraction of 16	 a Communication Register b in 8051, Programming of interfacing, LCD interfacing b interfacing. c interfacing. c ing, 2007. c ind Embedded Systems Us c Tata MGH. b in definition and division, squation in the second stress. 	sing smallest are, cube
Connections to RS-232, 8051 Serial Port Programming in C. Basics of Serial Communication, Serial connections to RS-232, 8051 Serial Port Programming in C. Basics of Interrupt hardware interrupts in C. Interfacing Techniques: Introduction to I/O Ports, Relays and Opto-isolator Keyboard interfacing, DAC interfacing, Sensor interfacing, 4 step sequence Semotor interfacing using PWM. SLC: 8 step sequence Stepper Motor interfacing, Seven segment LED Display I Text books: Kenneth Ayala, The 8051 Microcontroller, 3rd Edition, Thomson Learning M A Mazidi, J G Mazidi and R D Mckinlay, The 8051 Microcontroller a Assembly and C, 2nd Edition, Prentice Hall India, 2007. Reference Books: Myke Predko, Programming & Customizing 8051 the Microcontroller, 7 List of Experiments Part A: Assembly Level Programming Simple programs using mainly data transfer instructions: Block move, Exchelement in an array. Programs involving arithmetic operations like addition, subtraction, multiplied of 8 bit data bytes. Programs involving arithmetic operations like addition and subtraction of 16	Communication Register ts in 8051, Programming of the interfacing, LCD interfacing Stepper Motor interfacing Interfacing. Interfacing. </th <td>sing smallest are, cube</td>	sing smallest are, cube
Connections to RS-232, 8051 Serial Port Programming in C. Basics of Schar Commutineution, Schar Commutineuti, Schar Commutineution, Schar Commutineutio	Communication Register ts in 8051, Programming of interfacing, LCD interfacing Interfacing. Interfacing. ing, 2007. and Embedded Systems Us Fata MGH. 12 Hrs. Tange, Finding largest and lication and division, squated by the second systems. 5 bit data bytes. rotate.	sing smallest are, cube
connections to RS-232, 8051 Serial Port Programming in C. Basics of Interrupt hardware interrupts in C. Interfacing Techniques: Introduction to I/O Ports, Relays and Opto-isolator Keyboard interfacing, DAC interfacing, Sensor interfacing, 4 step sequence S motor interfacing using PWM. SLC: 8 step sequence Stepper Motor interfacing, Seven segment LED Display 1 Text books: Kenneth Ayala, The 8051 Microcontroller, 3rd Edition, Thomson Learni M A Mazidi, J G Mazidi and R D Mckinlay, The 8051 Microcontroller a Assembly and C, 2nd Edition, Prentice Hall India, 2007. Reference Books: Myke Predko, Programming & Customizing 8051 the Microcontroller, T List of Experiments Part A: Assembly Level Programming Simple programs using mainly data transfer instructions: Block move, Exchelement in an array. Programs involving arithmetic operations like addition, subtraction, multipliof 8 bit data bytes. Programs involving arithmetic operations like addition and subtraction of 16 Programs involving looping, indexing and counting. Part B: Interfacing	Communication Register ts in 8051, Programming of interfacing, LCD interfacing Interfacing. Interfacing. ing, 2007. and Embedded Systems Us Fata MGH. 12 Hrs. Iange, Finding largest and lication and division, squa 5 bit data bytes. rotate.	sing smallest are, cube

2. Interfacing Push button switch to 8051.

- 3. Programming 8051 to use external hardware interrupts.
- Blink LEDs using Timers of 8051.
 Interfacing bidirectional DC motors to 8051.
 Interfacing stepper motor with 8051.

EMERGING TECHNOLOGY COURSE – II

Cour	se T	itle						FUZ	ZYL	OGIC	CON	ΓROL			
Course Code 23ETEE41 (L-T-P) C (3-0-0) 3 CIE 50 Hours/Week 3												0) 3			
CIE						50						Hours/W	/eek	3	
SEE						50						Total Ho	ours	4()
Cour	se C)bjecti	ve: To	learn c	concept	t of fuz	zy logi	ic and	apply t	he sam	e to th	e systems	5		
Cour	se o	utcom	es: At	the end	l of cou	ırse, st	udent v	will be	able to	:					
#					Cours	se Out	comes					Mappi PO	ng to Is	Mapp PS	ing to Os
1 (Gain gain :	compre adequat	ehensivo te know	e knowl dedge a	edge of bout fu	f fuzzine zzy set	ess invo theory.	olved in	various	system	s and	1,2	2]	l
2 /	Appl	y fuzzy	membe	ership f	unction	s to dif	ferent p	roblem	s.			1,2	2		1
3 I	Deve	lop any	^v compl	ex, non	-linear	real wo	rld proł	olem fo	r fuzzy	system.		1,2	2]	1
4	Appl	y Fuzzy	y infere	nce tecł	nniques	to vari	ous ope	en and c	losed lo	oop syst	ems.	1,2	2		[
Course Articulation Matrix															
P COs	POs COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 CO1 2 2 2 2 2 <t< td=""></t<>														
CO1	CO1 2 2 2 2 CO2 2 2 2 2														
CO2	CO2 2 2 2 2 CO2 2														
CO3	CO3 2 2 CO3 2 2														
CO4	CO3 2 2 2 CO4 2 2 2														
							MOD	ULE-1							10 Hrs
Set T	heo	rv: Int	roducti	ion to :	fuzzy t	heory,	classic	al set.	operat	ion of	classic	al sets, F	uzzy set	ts, opera	tions on
fuzzy	sets	s, Prope	erties o	f fuzzy	v sets, 1	nappin	ig of cl	assical	sets ar	nd fuzz	y sets,	notation	of fuzzy	set.	
Relat	ions	s: Crisp	relatio	on, Car	tesian j	product	t, relati	on mat	rix for	crisp re	lation	, operation	ns of cris	sp relatio	on, fuzzy
relation	ons,	operat	ions of	fuzzy	relatio	ns, pro	perties	of fuz	zy relat	tions, f	uzzy C	Cartesian p	product,	compos	ition.
							MOD	ULE-2							10 Hrs
Conti	inuo	ous M	ember	ship 1	functio	on: M	embers	ship fi	unction	, Туре	es of	members	ship fur	nctions,	Plot of
memt	bersl	hip fun	ctions,	Mathe	ematica	al expro	essions	tor de	gree of	f mem	bershij	o, support	t, width,	nucleus	, height,
core o	of a :	fuzzy, o	convex	and no	on-con	vex fuz	zzy, no	rmal ai	nd subr	iormal	fuzzy.	a madu		a madu	na tallan
inforg	y L	ogic: 1	ruzzy prositi	propos anal r	ule of	Tuzzy infor	logic,	opera	uons c	n icatic	y logi n (7)	ndeh's ir	s ponen nnligatio	s, mout	is tonen mdani's
impli	catic	on ann	roxima	ite reas	oning	fuzzy	if then	statem	ents	pricatic	л (Да		npncan	<i>JII)</i> , IVIC	iniuani s
mpn	ound	<u>, app</u>	10/11110	ite reas	<u>omn</u> ₅ ,	Tully	MOD	ULE-3	ento.						10 Hrs
Fuzz	v svs	stems:	Lingui	stic va	riables	, Lingu	istic h	edges:	fuzzy o	concen	tration	, dilation	and inte	nsificati	on, Rule
based	sys	tems, (Graphic	cal tech	niques	s of info	erence:	Mamo	lani's i	nferen	ce.	·			,
Fuzzi	ifica	tion a	and D	efuzzi	ficatio	n: Co	ncept	of fu	zzifica	tion, l	Defuzz	zification	Method	ds : M	aximum
memb	persl	hip prii	nciple,	Centro	oid met	hod, W	Veighte	d avera	age me	thod, N	Mean r	nax mem	bership,	Center	of sums,
Cente	er of	largest	t area, i	first (o	r last) o	of max	ima.								
							MOD	ULE-4							10 Hrs
Fuzz	y Ki	nowlec	lge Ba	sed Co	ontroll	ers (F	KBC):	Basic	conce	pt of f	uzzy 1	logic cont	trol, stru	icture of	f FKBC,
choic	e of	membe	ership i	tunctio	ns, sca	ling fac	tors, r	ules: va	alue as	signme	nt for	input and	output v	ariables	, control
rule t		CFAM DL and	l), App	oncatio	ons: Fu	izzy w	asning	machi	ne, Fu	zzy tra	mc re	gulations	, Fuzzy	logic co	ontrol of
DID 1	s, r, ike l	FT allu													
Tevt	hool	ks.													
1.	D.	. Drian	kov. H	. Helle	ndoom	n and N	A. Reir	nfrank.	An Int	roducti	ion to	Fuzzv Co	ntrol. N	arosa Pı	ublishers
	In	dia, 19	96.					,							
2.	Ti	motv F	Ross. F	uzzy L	ogic w	ith Eng	pineeri	ng Apr	licatio	ns. Mc	Graw	Hill. 2009).		

Reference Books:

- 1. R. R. Yaser and D. P. Filer, Essentials of Fuzzy Modeling and Control, John Wiley, 1994.
- 2. G. J. Klir and T. A. Folger, Fuzzy Sets Uncertainty and Information, PHI IEEE, 1995.
- 3. P. Ramesh Babu, Digital Signal Processing, Fourth Edition, SciTech Publications, 2011.
- 4. A. Nagoor Kani, Digital Signal Processing, Second Edition, McGraw Hill Education (India) Private Ltd., 2012.

Course Title	BATTERY ENER	RGY STORAGE SYSTEMS	
Course Code	23ETEE42	(L-T-P) C	(3-0-0) 3
CIE	50	Hours/Week	3
SEE	50	Total Hours	40

Course Objective: To explore the fundamentals, technologies and applications of battery energy storage systems. **Course outcomes:** At the end of course, student will be able to:

#	Course Outcomes	Mapping to POs	Mapping to PSOs
1	Interpret the Battery terminologies and Equivalent-	1.2	1
	Circuit Models of Lithium-ion Battery.	1,2	1
2	Analyze the different battery energy storage technologies and their relative advantages and disadvantages	1,2	1
3	Apply the role of battery management systems in electric vehicle.	1,2	1

Course Articulation Matrix

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3											2	
CO2	2	3											3	
CO3	3	2											3	

MODULE-1

10 Hrs

10 Hrs

Introduction to Batteries: Type of battery and its selection, Selection of battery cell and types, Working principle of battery, primary and secondary (flow) batteries, battery performance evaluation methods, major battery chemistries and their voltages- Li-ion battery& Metal hydride battery vs lead-acid battery.

SLC: Ageing, Uncontrolled operating conditions and abuses of Battery

MODULE-2

Selection & sizing of Balance of system for battery energy storage system: Selection sizing of inverter duty transformer, Sizing of BESS container & ventilation arrangement, Selection of ACDB, DCDB and switchgear selection, Selection of DC cable between DC DB to PCU, Selection AC Cable between ACDB to transformer Cable section for PCU and Inverter, Type of Earthing and calculation, Section of string inverter or central inverter, Protection scheme of HT side.

SLC: Battery-pack topology

MODULE-3

Supercapacitors: Working principle of supercapacitor, types of supercapacitors, cycling and performance characteristics, difference between battery and supercapacitors, Introduction to Hybrid electrochemical supercapacitors.

Fuel cell: Operational principle of a fuel cell, types of fuel cells, hybrid fuel cell-battery systems, hybrid fuel cell-supercapacitor systems.

SLC: Benefits of accurate SOC estimates

MODULE-410 HrsBattery energy storage system for transportation: Mechanical Design and Packaging of Battery Packs for
Electric Vehicles, Advanced Battery-Assisted Quick Charger for Electric Vehicles, Charging Optimization
Methods for Lithium-Ion Batteries, Thermal run-away for battery systems, Thermal management of battery

systems, State of Charge and State of Health Estimation Over the Battery Lifespan, Recycling of Batteries from Electric Vehicles.

SLC: Need for health estimates of Battery

Text books:

- 1. Frank S. Barnes and Jonah G. Levine, Large Energy Storage Systems Handbook (Mechanical and Aerospace Engineering Series), CRC press (2011)
- 2. Ralph Zito, Energy storage: A new approach, Wiley (2010)

Reference Books:

- 1. Pistoia, Gianfranco, and Boryann Liaw. Behaviour of Lithium-Ion Batteries in Electric Vehicles: Battery Health, Performance, Safety, and Cost. Springer International Publishing AG, 2018.
- 2. Robert A. Huggins, Energy storage, Springer Science & Business Media (2010)
- 3. Francois Beguin and Elzbieta Frackowiak ,"Super capacitors", Wiley, 2013.
- 4. Doughty Liaw, Narayan and Srinivasan, "Batteries for Renewable Energy Storage", The Electrochemical Society, New Jersy, 2010.

Cour	rse Tit	tle		PY	THON	PRO	GRAN	IMIN	G FOR	R ELE	CTRIC	AL ENG	GINEEF	RING	
Cour	rse Co	ode		23ET	EE43					(L-]	Г-Р) С		(3-	0-0) 3	
CIE				5	0					Hours/	/Week			3	
SEE50Course Objective: Develop problem-solving skills using Py											Hours			40	
Cour	rse Ob	ojectiv	ve: Dev	elop pi	roblem	-solvin	g skills	s using	Pythor	n.					
Cour	rse ou	tcome	es: At th	ne end	of cour	se, stu	dent w	ill be a	ble to:						
#			(Course	Outco	omes				Mapp	oing to l	POs	Мар	ping to	PSOs
1	Anal	lyze d	complex	c elect	rical c	rcuits	using	Pytho	n		12			2	
	prog	ramm	ing								1, 2				
2	Crea	te Py	rthon p	rogran	ns to	model	and	simula	te	3 5				2	
	elect	rical s	systems								5,5			2	
3	Eval	uate a	nd asse	ss vari	ous ele	ctrical	parame	eters ar	nd		4.6			2	
	cont	rol sys	stems us	sing m	achine	learnin	ig and]	Python	•		., 0			-	
4	App	ly Py	hon pr	ogram	ming s	kills to	o addro	ess rea	l-		3. 4. 5		2		
	worl	d cha	lenges	in elec	trical e	nginee	ring.			-, -, -				-	
					1	Co	ourse A	Articul	ation I	Matrix	I	1	1	1	1
C	POs Ds	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CC	D1	2	3												2
CC	02			3		3									2
CC	03				3		1								2
CC	04			3	2	3									2
											1			1	
							MOD	ULE-1							10 Hrs
Intro varia	ducti bles, o	on to data ty	Pytho pes. Co	n Pro ontrol	gramn Structu	ning: 1 res: If-	Python else st	Basic atemer	s: Intr nts, loc	oductio ps (for	on to P ; while)	ython, i . Functi	nstallati ons: De	on, basi fining ai	c syntax, nd calling

variables, data types. Control Structures: If-else statements, loops (for, while). Functions: Defining and calling functions, scope of variables. Basic Libraries: Introduction to essential Python libraries (NumPy, SciPy). Applications in Electrical Engineering: Ohm's Law: Simple Python programs to solve Ohm's Law problems, Kirchhoff's Voltage Law (KVL) Kirchhoff's Current Law (KCL), Analyzing simple resistor networks.. **SLC:** Pactice basic syntax, control structures, and functions to reinforce understanding.

MODULE-2

Python for Advanced Circuit Analysis: Advanced Data Structures: Lists, tuples, dictionaries, sets. **File Handling**: Reading from and writing to files, **Plotting with Matplotlib**: Visualizing data and circuit behavior. **Complex Circuit Analysis**: Using Python to analyze RLC circuits, Solving circuits with multiple power sources., Analyzing AC circuits using Python. **Use Cases and Applications**: Designing Python programs to solve complex RLC circuit problems, Real-time plotting of circuit parameters.

SLC: Develop problems based on advanced circuit analysis techniques like mesh analysis and nodal analysis

MODULE-3

Electrical Machine Characteristics and Control Systems: Advanced Libraries and Tools: Introduction to Pandas, SymPy, and other relevant libraries. Numerical Methods in Python: Solving differential equations, numerical integration. Characteristics of Electrical Machines: Analysis of DC machines: Characteristics and performance. Analysis of AC machines: Induction motors and synchronous machines. Efficiency and losses in electrical machines. Control Systems: Modeling control systems using Python. P, PI and PID controller design and tuning. Time and frequency domain analysis of control systems.

SLC: Fundamentals of electrical machines, including DC machines, induction motors, and synchronous machines.

MODULE-4

10 Hrs

Advanced Applications: Signal Processing: Digital signal processing using Python. Fourier analysis and filtering. Machine Learning for Electrical Engineers: Basics of machine learning. Applying machine learning to electrical engineering problems (e.g., fault detection, load forecasting).

SLC: Explore advanced Python libraries, such as TensorFlow for machine learning or SciPy for scientific computing.

Text books:

1. Austin O'Connor, "Python for Electrical Engineering: A Complete Guide"

2. Eric Matthes, "Python Crash Course"

Reference Books:

1. "Python for Data Analysis" by Wes McKinney

Web link:

- 1. https://www.python.org/
- 2. https://realpython.com/
- 3. https://www.kaggle.com/

Course Title	OBJECT ORIENTE	ED PROGRAMMING	WITH C++
Course Code	23ETEE44	(L-T-P) C	(3-0-0) 3
CIE	50	Hours/Week	3
SEE	50	Total Hours	40

Course Objective: To code a given problem using C++.

Course outcomes: At the end of course, student will be able to:

#	Course Outcomes	Mapping to POs	Mapping to PSOs
1	Understand tokens, expressions, and control structures	1,5	-
2	Apply the functions and pointers in your C++ program	1,5	-
3	Understand and employ file management	1,2,3,5	-
4	Interpret how to control errors with exception handling	1,2,3,5	-

Course Articulation Matrix

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3				3									
CO2	2				3									
CO3	3	2	2		3									
CO4	2	2	2		3									

MODULE-1

Introduction: Comparison between POP and OOP, Basic features and concept of OOP. The C++ Program, input operator, output operator, Pre-processor directives; The C++ Data Types: Basic data types, User defined data types. **Functions**: Function prototype, argument passing, returning a value, recursion, inline functions, lifetime - scope, global objects and functions, local objects.

MODULE-2

Overloaded functions: overloaded function declarations, the three steps of overload resolution; Generic functions (function template), generic function restrictions, a generic sort. **Classes and Objects:** Introducing C++ classes: Classes, friend functions, friend classes, inline functions within a class, Constructors and destructors, static class members - static data members, static member functions.

MODULE-3

The scope resolution operator; local classes, creating a member operator function: operator overloading and restrictions, Operator overloading using a friend function, examples involving unary and binary operators. **Inheritance:** Base class access control, inheritance and protected members, protected base class

inheritance, inheriting multiple base classes, constructors, destructors and inheritance.

MODULE-4

10 Hrs

Virtual classes and functions: Virtual base classes, calling a virtual function through a base class reference, the virtual attribute is inherited, virtual functions, hierarchical, pure virtual functions. **The I/O stream library**: Handling Input and Output streams, File handling, Input-Output manipulators, Overloading the output operator «, Overloading the input operator ».

Text books:

1. Robert Lafore, Object-Oriented Programming in C++. The Waite Group, Galgotia Publications, Third Edition, 1999.

Reference Books:

- 1. Herbert Schmidt, C++, The complete reference, TMH, Third Edition, 1998.
- 2. John R Hubbard, Programming with C++, Schaum's Outline Series, McGraw Hill, Second Edition, 2000.

Course Title	UNIVERSAL HUMAN VALUES										
Course Code	23UHV4X	(L-T-P) C	(0-0-2) 1								
CIE	50	Hours/Week	2								
SEE	50	Total Hours	28								

Course Objective: The course aims at the development of the value education by the right understanding through the process of self-exploration (about themselves), family, society and nature/existence. Strengthening of self-reflection by development of commitment and courage to act are presented as the prime focus throughout the course towards qualitative transformation in the life of the student.

Course outcomes: At the end of course, student will be able to:

#	Course Outcomes	Mapping to POs	Mapping to PSOs
1	Start exploring themselves, get comfortable with each other and with the teacher and they start appreciating the need and relevance for the course. Also they are able to note that the natural acceptance (intention) is always for living in harmony.	6, 7, 8, 9,12	-
2	Differentiate between the characteristics and activities of different orders and study the mutual fulfillment among them and need to take appropriate steps to ensure right participation (in terms of nurturing, protection and right utilization) in the nature.	6, 7, 8, 9, 12	_
3	Present sustainable solutions to the problems in society and nature. They are also able to see that these solutions are practicable and draw roadmaps to achieve them.	6, 7, 8, 9, 12	-

Course Articulation Matrix

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						2	1	3	2			1		
CO2						2	1	3	2			1		
CO3						2	1	3	2			1		
MODULE-1											10 Hrs			

Introduction to Value Education: Understanding Value Education, Self-exploration as the Process for Value Education, Continuous Happiness and Prosperity – the Basic Human Aspirations, Right Understanding, Relationship and Physical Facility, Happiness and Prosperity – Current Scenario, Method to Fulfill the Basic Human Aspirations

MODULE-2

Harmony in the Human Being: Understanding Human being as the Co-existence of the Self and the Body, Distinguishing between the Needs of the Self and the Body, The Body as an Instrument of the Self Lecture, Understanding Harmony in the Self Tutorial, Harmony of the Self with the Body to ensure self-regulation and Health.

MODULE-3

Harmony in the Family, Nature and Existence: Harmony in the Family – the Basic Unit of Human Interaction, Values in Human-to-Human Relationship, 'Trust' – the Foundational Value in Relationship, 'Respect' – as the Right Evaluation, Understanding Harmony in the Society, Vision for the Universal Human Order. Whole existence as Coexistence: Understanding the harmony in the Nature, Interconnectedness and mutual fulfilment among the four orders of nature recyclability and self-regulation in nature. Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology etc.

MODULE-4

Implications of the Holistic Understanding – a Look at Professional Ethics: Natural Acceptance of Human Values, Definitiveness of (Ethical) Human Conduct A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order, Competence in Professional Ethics, Holistic Technologies, Production Systems and Management Models, Typical Case Studies, Strategies for Transition towards Value-based Life and Profession.

Self-Learning Activities:

- 1. Sharing about Oneself and Exploring Natural Acceptance
- 2. Exploring Harmony of Self with the Body
- 3. Exploring the Feeling of Respect
- 4. Exploring the Four Orders of Nature Lecture and Exploring Co-existence in Existence
- 5. Exploring Humanistic Models in Education, Exploring Steps of Transition towards Universal Human Order

Text books:

- 1. A Foundation Course in Human Values and Professional Ethics, R R Gaur, R Asthana, G P Bagaria, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-47-1
- 2. Teachers' Manual for A Foundation Course in Human Values and Professional Ethics, R R Gaur, R Asthana, G P Bagaria, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-53-2

Reference Books:

- 1. JeevanVidya: EkParichaya, A Nagaraj, JeevanVidyaPrakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J C Kumarappa
- 8. Bharat Mein Angreji Raj PanditSunderlal.
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi.
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)
- 13. Gandhi Romain Rolland (English)

10 Hrs

10 Hrs

Evaluation :

Continuous Internal Evaluation (CIE)

Two CIEs will be conducted for 20 marks each.

For the activity component students should form a team of 3 to 4 members each. A group activity should be assigned to each team based on the modules covered in the course. Students should show the progress in this activity as a preliminary phase for SEE.

CIE	Schedule	Assessment Method	Marks	Duration (Min.)
CIE I	At the end of 8 weeks	Objective Questions	20	60
CIE II	At the end of 11 weeks	Objective Questions	20	60
Activity	After CIE 2	Presentation/Role Play/Prototype development	10	-

Course Title	BIO	LOGY FOR ENGINEERS	
Course Code	23BE4X	(L-T-P) C	(1-0-0) 1
CIE	50	Hours/Week	2
SEE	50	Total Hours	14
Course Objective: To	analyze the basic biological conce	ots and their engineering ann	lications

Course Objective: To analyze the basic biological concepts and their engineering applications. **Course outcomes:** At the end of course, student will be able to:

#	Course Outcomes	Mapping to POs	Mapping to PSOs
1	To familiarize engineering students with basic biological concepts in an engineering perspective.	6,7,8,9,10,12	-
2	To involve students in an interdisciplinary vision of biology and engineering	6,7,8,9,10,12	-
3	To gain the realization of translation of natural engineering in biological systems into novel devices in man-made engineering domain.	6,7,8,9,10,12	-
4	To gain the realization of translation of natural engineering in biological systems into novel devices in man-made engineering domain.	6,7,8,9,10,12	-

Course Articulation Matrix

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						3	1	3	1	3	1	2		
CO2						3	1	3	1	3	1	2		
CO3						2	3	2	3	2	3	2		
CO4						2	3	2	3	2	3	2		

MODULE-1

8 Hrs

6 Hrs

Introduction to Human Anatomy: Overview of human anatomy, Structural organization of the human body - cardiovascular system, endocrine system, digestive system, respiratory system, excretory system, lymphatic system, nervous system, muscular system and skeletal system.

MODULE-2

Receptors (Sensors) and Effectors (Actuators): Comparative study of biological principles with Electrical principles, Sense Organs; External and Internal sense organs, Effectors; Muscles and glands, brief introduction to Sensory and motory nerves, Comparative Study of Sensors and Actuators (Engineering system) based on the concepts of Receptors and Effectors in Human body

MODULE-3

Communication system in Human Body: Nervous system; Neurons, Organ of human body, Nerves; Cranial nerves, Spinal nerves and visceral nerves, Functioning of various nerves as Sensory nerves, Motory nerves and Relay nerves, Comparison of natural communication system with the design of engineering system

MODULE-4

8 Hrs

Controls involved in Human Body: Controls involved in Human Body: Introduction to Open loop and Closed loop system, Role of Endocrine system in control process of many parameters, study of natural Control in various biological systems, Extending the concept of Biological Open loop and closed loop systems to the field of automation, Case studies.

Text books:

1. Johnson A T (2018), Biology for Engineers, CRC Press

Reference Books:

1. B D Chaurasia's, Handbook of General Anatomy, 4th Edition

Web link:

https://onlinecourses.nptel.ac.in/noc19_ge31/preview

ABILITY ENHANCEMENT COURSE – IV

Course Title	SIMULATIO	SIMULATION OF DIGITAL ELECTRONIC CIRCUITS										
Course Code	23AEEE42	(L-T-P) C	(0-0-2) 1									
CIE	50	Hours/Week	2									
SEE	50	Total Hours	24									
~												

Course Objective: To practice analysis of digital electronic circuits using simulation software. **Course outcomes:** At the end of course, student will be able to:

#	Course Outcomes	Mapping to POs	Mapping to PSOs
1	Verification of various combinational logic circuits.	1,5	2
2	Design and simulation of shift registers and counters.	1,5	2
3	Practice design of sequential circuits through computer simulation.	1,5	2

Course Articulation Matrix

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3				2									2
CO2	3				3									2
CO3	3				2									2

List of Experiments

- 1. Simulation of logic gates.
- 2. Simulation of boolean expressions realization using universal gates.
- 3. Simulation of adders and subtractors.
- 4. Simulation of 1-bit and 2-bit comparators.
- 5. Simulation of Priority Encoders and decoders.
- 6. Design and Simulation of combinational circuits using multiplexers.
- 7. Simulation of SR, JK and D flip-flops.
- 8. Design and Simulation of SISO shift register.
- 9. Design and simulation of a synchronous/asynchronous counters.
- 10. Design of sequential logic circuits.

Cou	rse Titl	e				IN	TEGR	ATED		TUIT		RATORY	7				
Cou	rse Coo	le	2	23AEF	E43			(L-T-P) C	(0-0-2) 1						
CIE			50 Hours/Week 2														
SEE 50 Total Hour													24				
Cou	Course Objective: To design and analyze the electronic circuits using op-amp IC741.																
Cou	rse out	comes	: At the	e end c	of cours	se, stud	ent wil	ll be ab	ole to:								
#	# Course Outcomes											g to POs	Maj	oping to	PSOs		
1 Design an Op-Amp to function as an amplifier, adder, subtractor, and rectifier										er,	2,	3,9		2			
2	Desig	n and	and test the Op-Amp as oscillators and filters.									2,3,9			2		
3	Desig Digita	n Digi al Con	tal to A verter (Analog (ADC)	Conve circuit	rter (D s using	AC) an op-an	nd Ana nps.	log to		2,3,9 2						
						Co	ourse A	rticul	ation N	Matr	ix		•				
С	POs Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	9 PO10	PO11	PO12	PSO1	PSO2		
C	01		3	3						2					2		
C	CO2 2 2									3					2		
C	03		3	3						2					2		
			•		•			•	•	•	•	•		•	•		
							List o	of Exp	erimer	ıts							

- 1. Design and verify a precision full wave rectifier using IC 741.
- 2. Study and implement summing and differential amplifiers.
- 3. Design and verify the output waveform of an op amp RC phase shift oscillator for a desired frequency.
- 4. Design and realize Schmitt trigger circuit using an op amp for desired upper trip point (UTP) and lower trip point (LTP).
- 5. Design low-pass and high-pass active filter circuits using IC 741.
- 6. Design and realize Digital to Analog Converter (DAC) circuit using an op amp.
- 7. Design and realize Analog to Digital Converter (ADC) circuit using an op amp.

Course Title		IOT LABORATOR	Y	
Course Code	23AEEE44	(L-T-P) C	(0-0-2) 1	
CIE	50	Hours/Week	2	
SEE	50	Total Hours	24	

Course Objective: Build small low-cost embedded IoT systems using Arduino/Raspberry Pi/ open platform. **Course outcomes:** At the end of course, student will be able to:

Course Outcomes								Ma	Mapping to POs			Mapping to PSOs				
Interp Cloud	Interpret the IoT components and transfer data to IoT Cloud.								1,5			1,2				
Imple Ardui	Implement interfacing of various sensors with Arduino/Raspberry Pi.									1,5			1,2			
Analysis the IoT systems for real time applications									1,5			1,2				
Course Articulation Matrix																
POs Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
201	3				3								2	3		
202	3				3								2	3		
203	3				3								2	3		
	Interr Cloud Imple Ardui Analy POs Os O1 O2 O3	Interpret the Cloud.Implement Arduino/RasAnalysis thePOs OsPO1 O1013 O2033	CeInterpret the IoT coCloud.Implement interfaArduino/RaspberryAnalysis the IoT syPOsPOsPO1PO2O13O23O33	Course (Interpret the IoT componeCloud.Implement interfacing Arduino/Raspberry Pi.Analysis the IoT systemsPOs OsPO1 PO2 PO3O13 O2O33	Course OutcorInterpret the IoT components and Cloud.Implement interfacing of var Arduino/Raspberry Pi.Analysis the IoT systems for reaPOs OsPO1PO2PO3PO4O13023033	Course OutcomesInterpret the IoT components and transf Cloud.Implement interfacing of various s Arduino/Raspberry Pi.Analysis the IoT systems for real timeConstructionPOs OsPO1 O1PO2 O2PO3 O3PO3 <td>Course OutcomesInterpret the IoT components and transfer data Cloud.Implement interfacing of various sensors Arduino/Raspberry Pi.Analysis the IoT systems for real time applica Course APOs OsPO1PO2PO3PO4PO5PO6O13O23O33</td> <td>Course OutcomesInterpret the IoT components and transfer data to IoT Cloud.Implement interfacing of various sensors with Arduino/Raspberry Pi.Analysis the IoT systems for real time applicationsCourse ArticularPOs OsPO1PO2PO3PO4PO5PO6PO7O13O23O33</td> <td>Course OutcomesMaInterpret the IoT components and transfer data to IoT Cloud.Implement interfacing of various sensors with Arduino/Raspberry Pi.Analysis the IoT systems for real time applicationsCourse Articulation NPOs OsPO1PO2PO3PO4PO5PO6PO7PO8O1333023303303303</td> <td>Course OutcomesMappingInterpret the IoT components and transfer data to IoT Cloud.1,5Implement interfacing of various sensors with Arduino/Raspberry Pi.1,5Analysis the IoT systems for real time applications1,5Course Articulation MatrixPOs OsPO1PO2PO3PO4PO5PO6PO7PO8PO9O13330300O2333000</td> <td>Course OutcomesMapping to POsInterpret the IoT components and transfer data to IoT Cloud.1,5Implement interfacing of various sensors with Arduino/Raspberry Pi.1,5Analysis the IoT systems for real time applications1,5Course Articulation MatrixPOs OsPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10O133303000O23330000</td> <td>Course OutcomesMapping to POsInterpret the IoT components and transfer data to IoT Cloud.1,5Implement interfacing of various sensors with Arduino/Raspberry Pi.1,5Analysis the IoT systems for real time applications1,5Course Articulation MatrixPOs OsPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11O13330300O2333000</td> <td>Course OutcomesMapping to POsMappinInterpret the IoT components and transfer data to IoT Cloud.1,51,5Implement interfacing of various sensors with Arduino/Raspberry Pi.1,51,5Analysis the IoT systems for real time applications1,51,5Course Articulation MatrixPOs OsPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12O133303000O33330000</td> <td>Course OutcomesMapping to POsMapping to PSInterpret the IoT components and transfer data to IoT Cloud.1,51,2Implement interfacing of various sensors with Arduino/Raspberry Pi.1,51,2Analysis the IoT systems for real time applications1,51,2Course Articulation MatrixPOs OsPO1 PO2PO3 PO3PO4 PO5PO6 PO6PO7 PO7PO8 PO8PO9 PO9PO10 PO10PO11 PO11PO12 PS01O133432O233322</td>	Course OutcomesInterpret the IoT components and transfer data Cloud.Implement interfacing of various sensors Arduino/Raspberry Pi.Analysis the IoT systems for real time applica Course APOs OsPO1PO2PO3PO4PO5PO6O13O23O33	Course OutcomesInterpret the IoT components and transfer data to IoT Cloud.Implement interfacing of various sensors with Arduino/Raspberry Pi.Analysis the IoT systems for real time applicationsCourse ArticularPOs OsPO1PO2PO3PO4PO5PO6PO7O13O23O33	Course OutcomesMaInterpret the IoT components and transfer data to IoT Cloud.Implement interfacing of various sensors with Arduino/Raspberry Pi.Analysis the IoT systems for real time applicationsCourse Articulation NPOs OsPO1PO2PO3PO4PO5PO6PO7PO8O1333023303303303	Course OutcomesMappingInterpret the IoT components and transfer data to IoT Cloud.1,5Implement interfacing of various sensors with Arduino/Raspberry Pi.1,5Analysis the IoT systems for real time applications1,5Course Articulation MatrixPOs OsPO1PO2PO3PO4PO5PO6PO7PO8PO9O13330300O2333000	Course OutcomesMapping to POsInterpret the IoT components and transfer data to IoT Cloud.1,5Implement interfacing of various sensors with Arduino/Raspberry Pi.1,5Analysis the IoT systems for real time applications1,5Course Articulation MatrixPOs OsPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10O133303000O23330000	Course OutcomesMapping to POsInterpret the IoT components and transfer data to IoT Cloud.1,5Implement interfacing of various sensors with Arduino/Raspberry Pi.1,5Analysis the IoT systems for real time applications1,5Course Articulation MatrixPOs OsPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11O13330300O2333000	Course OutcomesMapping to POsMappinInterpret the IoT components and transfer data to IoT Cloud.1,51,5Implement interfacing of various sensors with Arduino/Raspberry Pi.1,51,5Analysis the IoT systems for real time applications1,51,5Course Articulation MatrixPOs OsPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12O133303000O33330000	Course OutcomesMapping to POsMapping to PSInterpret the IoT components and transfer data to IoT Cloud.1,51,2Implement interfacing of various sensors with Arduino/Raspberry Pi.1,51,2Analysis the IoT systems for real time applications1,51,2Course Articulation MatrixPOs OsPO1 PO2PO3 PO3PO4 PO5PO6 PO6PO7 PO7PO8 PO8PO9 PO9PO10 PO10PO11 PO11PO12 PS01O133432O233322		

List of Experiments

- 1. Traffic light control system using Arduino UNO.
- 2. Interfacing ultrasonic sensor with Arduino UNO for Obstacle detection and Distance measurement
- 3. Interfacing IR sensor with Arduino UNO for DC motor control
- 4. Interfacing soil moisture sensor with Arduino Uno for detect moisture in the soil
- 5. Interfacing LDR sensor with Arduino UNO to switch on/off 230V bulb using 5V Relay
- 6. Greetings message through webpage with ESP as server.
- 7. Temperature and humidity monitoring in cloud platform
- 8. Servo motor control with webpage
- 9. WIFI weather station tool and analysis
- 10. Temperature and humidity monitoring with Raspberry Pi