DEPARTEMENT OF MATHEMATICS

Cours	rse Title Mathematics for Computer Science Engineering stream -2					
Cours	e Code	22MATS21	(L-T-P)C			(3-1-2-4)
SEE d	uration	3 hour	Hours / Week			06
CIE (7	Theory) marks	30	CIE (Practical	s)/Activit	y marks	20
SEE n	narks	50	Total contact l	nours		70
Course calcult Course	e Objective: To 1s, so as to solve Outcomes (CO	train the students to acquire k basic engineering application s): At the end of course, studer	nowledge in diff problems. nt will be able to:	erential ec	quations a	and vector
COs		Outcomes		PO1	PO2	
CO1	Apply suitable ordinary differ and vector analytically/nu	e methods to solve the simp rential equations/partial difference calculus, number merically.	ole problems of ential equations theory,	3	-	
CO2	Examine the hi that are c differential equ	igher order problems (more dif connected with differential e nations and solve.	ficult problems) equations/partial	3	2	
CO3	Introspect the vector integrat stokes theorem	geometry of the region to ion problems of gauss diverg , greens theorem.	compute the ence theorem,	3	2	-
CO4	Model the r problems and	eal-life problems/ Engineeri l hence solve the same.	ng application	3	2	
Course	e Contents:				I	
		MODULE –1			-	10 Hrs.
Differe	ntial Equations	of First order First Degree (l	DE): Solution of	exact diffe	erential e	quations.
Higher	Order Differe	ential Equations Linear diffe	rential equation	with cons	stant coe	fficients -
Solutior	ns of homogenee	ous equations.Particular solution	on of non - homo	genous di	fferential	equations
by inve	rse differential of	operator method for the follow	ving standard form	ns; expon	ential, po	olynomial,

trigonometric and their product.

Self – **study:** Linear differential equations, Bernoulli's differential equations. Method of variation of parameters to solve linear differential equation with constant coefficients. Matrix method to solve homogeneous differential equations of order 2, degree 1.Orthogonal trajectories in Cartesian form,

DEPARTEMENT OF MATHEMATICS

illustrative examples.

10 Hrs.

Numerical solution of first order, first degree ODE: Taylor series method, Runge-Kutta (RK) method of fourth order, Milne's predictor corrector methods.

Partial Differential Equations: Solving PDE by variable separable method, To find all possible solutions of one-dimensional wave equation, solution of system of equations by Gauss Seidel iteration method.

Numerical solution of a Laplace equation, Poisson equation by finite difference approximation methodusing standard fivepoint formula, diagonal formula and iterative formulas.

Self-study: To find all possible solutions of one-dimensional heat equation, two-dimensional Laplace's equation. Numerical solution of Simultaneous differential equations, numerical solution of second order differential equations by RK method.

MODULE -3

10 Hrs. Vector Calculus: Velocity & acceleration of a vector point function, moment of a force, velocity of a rotating body, rotation of a rigidbody, Gradient, divergence & curl. Physical & Geometrical

Interpretation of dot product, Gradient, divergence & curl, irrotational vectors, illustrative examples from engineering field.

Line integrals, surface integrals and volume integrals, Statement of Green's theorem, Stokes theorem and Illustrative examples from engineering field.

Self – study: Gauss divergence theorem, Illustrative examples from engineering field.

MODULE – 4	10 hrs.
Applications in computer science engineering:	

Mathematical modelling through differential equations of first order first degree and solutionmodelling of population growth, carbon dating-half-life period, mixing problem involving one tank. two tank.

To mesuare the change over all concentration of glucose in blood when glucose is fed. continuous compounding.

Number theory -Properties of integers- division algorithem, GCD and LCM, Congruence relations, residue classes, congruence equations, applications of congruences on cryptography.

Self study- Applications of line integral- finding projectile height from its acceleration, initial velocity, initial position. Applications connected with Differential equations and vector calculus.

MALNAD COLLEGE OF ENGINEERING, HASSAN DEPARTEMENT OF MATHEMATICS

List of Programmes:

- Solution of first order ordinary differential equation using Taylor series & Range-kutta method.
- 2. Solution of partial differential equation (Laplace & Poisson equations)
- 3. Finding gradient , divergence and curl.
- 4. Computation of area, volume and center of gravity.
- 5. Verification of Green's theorem in vector integration.
- 6. Solution of system of equations by Gauss elimination method.
- Solution of 2nd order differential equations(by variation of parameter method).
- 8. Numerical solution of simultaneous differential equations by Range-kutta method.
- 9. Solution of system of linear equations using Gauss-Seidal iteration method.
- 10. Product of matrices & finding Inverse of a matrix.

NOTE:

1. Proofs are not required for any theorems and properties.

2. There should not be any questions from self study part in semester End Examination.

Text Books :

1.Dr. B. S. Grewal, Higher Engineering Mathematics, Khanna Publications, 44th edition, 2016.

2.Erwin Kreyszig, Advanced Engineering Mathematics, Wiley India Pvt. Ltd. 8th Edition (Wiley student edition) 2004.

3 .Calculus by Thomas Finney, 9th edition, Pearson education, 2002.

Reference Books:

1.R K. Jain and S. R. K. Jain & S. R. K. Iyengar, Numerical methods, New age international pvt. Publishers, 6thedition, 2014.

2.N.P. Bali and Manish Goyal, A textbook of Engineering Mathematics, Laxmi Publications, Reprint, 2010

DEPARTEMENT OF MATHEMATICS

Course Title		Mathematics for Electrical	and Electronics E	ngineerin	g strean	n-2
Cours	e Code	22MATE21	(L-T-P)C			(3-1-2-
		21				4)
SEE d	uration	3 hours	Hours / Week			06
CIE marks	(Theory)	30	CIE (Practicals)/Activity		20	
SEE n	narks	50	Total contact hours		70	
Course Objective: To train the students to acquire knowledge in differential equations vector calculus so as to solve basic engineering application problems.Course Outcomes (COs): At the end of course, student will be able to:			tions and			
COs		Outcomes		PO1	PO2	
CO1	Apply suitabl ordinary diffe and vector cal	le methods to solve the sin erential equations/partial diffe lculus, analytically/numerically	nple problems of erential equations y.	3	-	
CO2	Examine the l that are differential eq	nigher order problems (more d connected with differential puations and solve.	ifficult problems) equations/partial	3	2	
CO3	Introspect the vector integra stokes theorem	e geometry of the region t ation problems of gauss diver m, greens theorem.	to compute the rgence theorem,	3	2	
CO4	Model the problems ar	real-life problems/ Engineend hence solve the same.	ering application	3	2	
Cours	e Contents:				•	

MODULE	10
-1	Hrs.
Differential Equations of First order First Degree (DE): Solution of exact d	ifferential
equations.	

Higher Order Differential Equations, Linear differential equation with constant coefficients -Solutions of homogeneous equations.Particular solution of non - homogenous differential equations by inverse differential operator method for the following standard forms; exponential, polynomial, trigonometric and their product.

DEPARTEMENT OF MATHEMATICS

Self-study: Linear differential equations, Bernoulli's differential equations. Method of variation of parameters to solve linear differential equation with constant coefficients. Matrix method to solve homogeneous differential equations of order 2, degree 1.Orthogonal trajectories in Cartesian form, illustrative examples.

-2 Hrs.	MODULE	10
	-2	Hrs.

Numerical solution of first order, first degree ODE: Taylor series method, Runge-Kutta (RK) method of fourth order, Milne's predictor corrector methods.

Partial Differential Equations: Solving PDE by variable separable method, To find all possible solutions of one-dimensional wave equation, solution of system of equations by Gauss Seidel iteration method.

Numerical solution of a Laplace equation, Poisson equation by finite difference approximation method--using standard fivepoint formula, diagonal formula and iterative formulas.

Self – **study:** To find all possible solutions of one-dimensional heat equation, two-dimensional Laplace's equation. Numerical solution of Simultaneous differential equations, numerical solution of second order differential equations by Range-kutta method.

MODULE –3

10 Hrs.

Vector Calculus: Velocity & acceleration of a vector point function, moment of a force, velocity of a rotating body, rotation of a rigidbody, Gradient, divergence & curl. Physical & Geometrical Interpretation of dot product, Gradient, divergence & curl, irrotational vectors, illustrative examples from engineering field.

Line integrals, surface integrals and volume integrals, Statement of Green's theorem, Stokes theorem and Illustrative examples from engineering field.

Self – study: Gauss divergence theorem, Illustrative examples from engineering field.

MODULE –	10
4	hrs.
Applications in Electrical Engineering:	

Applications in Electrical Engineering:

Mathematical modelling through differential equations of first order first degree and solutionmodelling of population growth, carbon datinghalf-life period, mixing problem involving one tank, two tank. voltage in a discharging capacitor.

Modelling using difference equations- Growth of a Yeast Culture, spread of a Contagious Disease, Decay of Digoxin in the Blood stream, Solutions to Dynamical system .Linear dynamical system $a_{n+1} = ra_n$, $a_{n+1} = ra_n + b_n$, Sewage Treatment, Prescription for Digoxin. Applications of second-order differential equations $lQ^{II}(t) + RQ^{I}(t) + \frac{1}{c}Q(t) = E(t)$.-transient analysis of electrical net works, Modelling projectile motion(vector approach).

DEPARTEMENT OF MATHEMATICS

Self Study-Introduction to graph theory, types of graphs, subgraphs, trees, spanning subgraphs, shortest path algorithms.

List of Programmes:

- Solution of first order ordinary differential equation using Taylor series & Range-kutta method.
- 2. Solution of partial differential equation (Laplace & Poisson equations)
- 3. Finding gradient, divergence and curl.
- 4. Computation of area, volume and center of gravity.
- 5. Verification of Green's theorem in vector integration.
- 6. Solution of system of equations by Gauss elimination method.
- **7.** Solution of 2nd order differential equations(by variation of parameter method).
- 8. Numerical solution of simultaneous differential equations by Range-kutta method.
- 9. Solution of system of linear equations using Gauss-Seidel iteration method.
- 10. Product of matrices & finding Inverse of a matrix.

NOTE:

1. Proofs are not required for any theorems and properties.

2. There should not be any questions from self study part in semester End Examination.

Text Books :

1.Dr. B. S. Grewal, Higher Engineering Mathematics, Khanna Publications, 44th edition, 2016.

2.Erwin Kreyszig, Advanced Engineering Mathematics, Wiley India Pvt. Ltd. 8th Edition (Wiley student edition) 2004.

3.Calculus by Thomas Finney, 9th edition, Pearson education, 2002.

Reference Books:

1.R K. Jain and S. R. K. Jain & S. R. K. Iyengar, Numerical methods, New age international pvt. Publishers, 6thedition, 2014.

2.N.P. Bali and Manish Goyal, A textbook of Engineering Mathematics, Laxmi Publications, Reprint, 2010

DEPARTEMENT OF MATHEMATICS

Cours	Course Title Mathematics for Mechanical Engineering -2					
Course	e Code	22MATM21	(L-T-P)C			(3-1-2-
~~~~						4)
SEE d	uration	3 hours	Hours / Wee	ek		06
CIE marks	(Theory)	30	marks		20	
SEE n	narks	50	Total contact hours		70	
Course vector Course	e Objective: 7 calculus so as Outcomes (CO	To train the students to acqu to solve basic engineering app <b>Ds):</b> At the end of course, stud	ire knowledge in lication problems ent will be able to	n differentia s. o:	al equat	ions and
COs		Outcomes		PO1	PO2	
CO1	Apply suitabl ordinary diffe and vector cal	le methods to solve the sin erential equations/partial diffe lculus, analytically/numerically	nple problems o prential equations y.	f 5 3	-	
CO2	CO2 Examine the higher order problems (more difficult problems)   that are connected with differential equations/partial   differential equations 3		2	_		
CO3	Introspect the vector integra stokes theorem	e geometry of the region t ation problems of gauss diver n, greens theorem.	o compute the gence theorem,	3	2	
CO4	Model the problems ar	real-life problems/ Engineend hence solve the same.	ring application	n <u>3</u>	2	
Course Contents:						
		MODULE				10
-1 Hrs.				Hrs.		

**Differential Equations of First order First Degree (DE):** Solution of exact differential equations.

**Higher Order Differential Equations** Linear differential equation with constant coefficients -Solutions of homogeneous equations.Particular solution of non - homogenous differential equations by inverse differential operator method for the following standard forms; exponential, polynomial, trigonometric and their product.

**Self-study:** Linear differential equations, Bernoulli's differential equations. Method of variation of parameters to solve linear differential equation with constant coefficients. Matrix method to

### **DEPARTEMENT OF MATHEMATICS**

solve homogeneous differential equations of order 2, degree 1.Orthogonal trajectories in Cartesian form, illustrative examples

MODULE -2	10 Hrs.
Numerical solution of first order, first degree ODE: Taylor series method, Runge-Ku	utta (RK)
method of fourth order, Milne's predictor corrector methods. Partial Differential Eq	luations:
Solving PDE by variable separable method, To find all possible solutions of one-dimensio	nal wave
equation, solution of system of equations by Gauss Seidel iteration method.	
Numerical solution of a Laplace equation, Poisson equation by finite difference appro	ximation
methodusing standard fivepoint formula, diagonal formula and iterative formulas.	
Self - study: To find all possible solutions of one-dimensional heat equation, two-dimensional heat equation, two equation heat equation, two equation heat equation heat equation, two equation heat	nensional
Laplace's equationNumerical solution of Simultaneous differential equations, n	umerical
solution of second order differential equations by Range kutta method.	
MODULE –3	10 Hrs.
Vector Calculus: Velocity & acceleration of a vector point function, moment of a force,	, velocity
of a rotating body, rotation of a rigid body, Gradient, divergence & curl. Physical & Geo	ometrical
Interpretation of dot product, Gradient, divergence & curl, irrotational vectors, ill	lustrative
examples from engineering field.	

Line integrals, surface integrals and volume integrals, Statement of Green's theorem, Stokes theorem and Illustrative examples from engineering field.

Self -study: Gauss divergence theorem, Illustrative examples from engineering field.

MODULE –	10
4	hrs.

**Applications in Mechanical Engineering:** 

Mathematical modelling through differential equations of first order first degree and solutionmodelling of population growth, Modelling of infected diseases, carbon dating-half-life period, mixing problem involving one tank, two tank. Newton's law of cooling, to compute the time required to drain the tank, resistance force opposing the motion, growth and decayradioactivity.

Applications of second order, first degree Differential equations -Applications of second order, first degree Differential equations –Mechanical Vibrations-A Spring mass system  $mu^{II}(t) + ku^{I}(t) + gu(t) = f(t)$ -Undamped free vibrations, damped free vibrations, forced vibrations with damping, --forced vibrations without damping,. Applications to find the orthogonal trajectories streamlines of flow in the channel, curves of constant temperature in a body equi-potential lines in an electric field between two concentric cylinders.

## **DEPARTEMENT OF MATHEMATICS**

**Self-study-** Application of first order differential equation- Autonomous equation and population dynamics-Application- Logistic model- Natural growth of halibut population in certain areas of pacific ocean, Harvesting a renewable resources. Application of eigen values of 2×2 matrices. Modelling projectile motion( vector approach).

#### List ofProgrammes:

- Solution of first order ordinary differential equation using Taylor series & Range-kutta method.
- 2. Solution of partial differential equation ( Laplace & Poisson equations)
- 3. Finding gradient, divergence and curl.
- 4. Computation of area, volume and center of gravity.
- 5. Verification of Green's theorem in vector integration.
- 6. Solution of system of equations by Gauss elimination method.
- **7.** Solution of 2nd order differential equations(by variation of parameter method).
- 8. Numerical solution of simultaneous differential equations by Range-kutta method.
- 9. Solution of system of linear equations using Gauss-Seidel iteration method.

10. Product of matrices & finding Inverse of a matrix.

#### NOTE:

1. Proofs are not required for any theorems and properties.

2. There should not be any questions from self study part in semester End Examination.

#### **Text Books :**

1.Dr. B. S. Grewal, Higher Engineering Mathematics, Khanna Publications, 44th edition, 2016.

2.Erwin Kreyszig, Advanced Engineering Mathematics, Wiley India Pvt. Ltd. 8th Edition (Wiley student edition) 2004.

3.Calculus by Thomas Finney, 9th edition, Pearson education, 2002.

#### **Reference Books:**

1.R K. Jain and S. R. K. Jain & S. R. K. Iyengar, Numerical methods, New age international pvt. Publishers, 6thedition, 2014.

2.N.P. Bali and Manish Goyal, A textbook of Engineering Mathematics, Laxmi Publications, Reprint, 2010

## **DEPARTEMENT OF MATHEMATICS**

Course Title	Mathematics for Civi	Engineering-2	
Course Code	22MATC21	L-T-P-C	(3-1-2-
			4)
SEE duration	3 hours	Hours / Week	06
CIE (Theory)	30	CIE (Practicals)/Activity	20
marks		marks	
SEE marks	50	Total contact hours	70

**Course Objective**: To train the students to acquire knowledge in Differential equations and vector calculus so as to solve basic engineering application problems. **Course Outcomes (COs):** At the end of course, student will be able to

COs	Outcomes	PO1	PO2
CO1	Apply suitable methods to solve the simple problems of ordinary differential equations/partial differential equations and vector calculus, analytically/numerically.	3	-
CO2	Examine the higher order problems (more difficult problems) thatare connected with differential equations/partial differential equations and solve.	3	2
CO3	Introspect the geometry of the region to compute the vector integration problems of gauss divergence theorem, stokes theorem, greens theorem.	3	2
CO4	Model the real-life problems/ Engineering application problems and hence solve the same.	3	2
Course	e Contents:		
	MODULE		

10
Hrs.

**Differential Equations of First order First Degree (DE):** Solution of exact differential equations,

-1

Higher Order Differential Equations, Linear differential equation with constant coefficients -Solutions of homogeneous equations.Particular solution of non- homogenous differential equations by inverse differential operator method for the following standard forms, exponential, polynomial, trigonometric and their product.

**Self – study:** Linear differential equations, Bernoulli's differential equations. Method of variation of parameters to solve linear differential equation with constant coefficients. Matrix method to solve homogeneous differential equations of order 2, degree 1.Orthogonal trajectories in Cartesian

## **DEPARTEMENT OF MATHEMATICS**

form, illustrative examples.					
MODULE -2	10 Hrs.				
Numerical solution of first order, first degree ODE: Taylor's series method, Runge-Kutta (RK)					
method of fourth order, Milne's predictor corrector methods.					
Partial Differential Equations: Solving PDE by variable separable method, To find all	possible				
solutions of one-dimensional wave equation, solution of system of equations by Gauss -Seidel					
iteration method.					
Numerical solution of a Laplace equation, Poisson equation by finite difference appro	ximation				
methodusing standard five pointformula, diagonal formula and iterative formulas.					
Self-study: To find all possible solutions of one-dimensional heat equation, two-dimensional					
Laplace equation. Numerical solution of Simultaneous differential equations, numerical solution					
of second order differential equations by RK method.					
MODULE –3	10 Hrs.				
Vector Calculus: Velocity & acceleration of a vector point function, moment of a force, velocity					
of a rotating body, rotation of a rigid body, Gradient, divergence & curl. Physical & Geometrical					
Interpretation of dot product, Gradient, divergence & curl, irrotational vectors, illustrative					
examples from engineering field.					
Line integrals, surface integrals and volume integrals, Statement of Green's theorem, Stoke's					
theorem and Illustrative examples from engineering field.					
Self – study: Gauss divergence theorem, Illustrative examples from engineering field.					
MODULE – 4	10 hrs.				
Applications in civil engineering:					
Mathematical modelling through differential equations of first order first degree and solution-					
modelling of population growth, finding initial velocity of the space vehicle so that it has to					
escape from earth. Modelling of infected diseases, carbon datinghalf-life period, mixing problem					
involving one tank, two tank.					
Applications of second order, first degree Differential equations - Applications of second order,					
first degree Differential equations –Mechanical Vibrations-A Spring mass system $mu^{II}(t)$ +					
$ku^{I}(t) + gu(t) = f(t)$ -Undamped free vibrations, damped free vibrations, forced vibrations with					
damping,forced vibrations without damping,					

Applications to find the orthogonal trajectories -streamlines of flow in the channel, curves of constant temperature in a body. equi-potential lines in an electric field between two concentric cylinders.

## **DEPARTEMENT OF MATHEMATICS**

**Self-study**- Application of first order differential equation- Autonomous equation and population dynamics-Application- Logistic model- Natural growth of halibut population in certain areas of Pacific Ocean, Harvesting a renewable resource. motion of a simple pendulum, Deflection of beams.

Modelling projectile motion( vector approach),

#### List of Programmes:

- Solution of first order ordinary differential equation using Taylor series & Runge-kutta method.
- 2. Solution of partial differential equation ( Laplace & Poisson equations)
- 3. Finding gradient , divergence and curl.
- 4. Computation of area, volume and center of gravity.
- 5. Verification of Green's theorem in vector integration.
- 6. Solution of system of equations by Gauss elimination method.
- **7.** Solution of 2nd order differential equations(by variation of parameter method).
- 8. Numerical solution of simultaneous differential equations by Range-kutta method.
- 9. Solution of system of linear equations using Guass-Seidal iteration method.
- 10. Product of matrices & finding Inverse of a matrix.

#### NOTE:

1. Proofs are not required for any theorems and properties.

2. There should not be any questions from self study part in semester End Examination.

#### Text Books :

1.Dr. B. S. Grewal, Higher Engineering Mathematics, Khanna Publications, 44th edition, 2016.2.Erwin Kreyszig, Advanced Engineering Mathematics, Wiley India Pvt. Ltd. 8th Edition (Wiley student edition) 2004.

3. Calculus by Thomas Finney, 9th edition, Pearson education, 2002.

#### **Reference Books:**

1. R K. Jain and S. R. K. Jain & S. R. K. Iyengar, Numerical methods, New age international pvt. Publishers, 6thedition, 2014.

2.N.P. Bali and Manish Goyal, A textbook of Engineering Mathematics, Laxmi Publications, Reprint, 2010

## **DEPARTEMENT OF MATHEMATICS**

## Articulation Matrix

#### Course Title: Statistics and Probability Course Code: 21MA401

Credits (L-T-P-S): 2-1-0-3

Course Type (Core/Elective): Core

Α	Course Outcomes							
	Course Objective: To introduce the concept of probability distribution functions,							
	hypothesis testing, complex analysis so as to apply in engineering application problems.							
	<b>Course Outcomes</b> : At the end of the course students will be able to							
	COs	Outcomes						
	CO1	Fit a suitable curve/regression line for the given experimental data,						
		probability and joint probability.						
	CO2	Validate an assumption through "hypothesis testing" (that is the assumption is						
		not simply because of chance).						
	CO3	Analyze the problems connected with probability to apply suitable						
		probability dis	stribution and	also, predict	the probability	in the long run for		
		Markov chain based problems.						
	CO4	Model real life problems/engineering application problems and solve the						
		same.						
В	CO-PO mapping							
		[		PO1	PO2	1		
			CO1	3	-	-		
			CO2	3	2			
			CO3	3	2	-		
			<b>CO4</b>	3	2			

**Course Contents:** 

	Statistics: Correlation - Karl Pearson coefficient of correlation and				
	Spearman's rank correlation coefficient. Physical interpretation of				
	numerical value of the rank correlation coefficient. Linear Regression				
	analysis (when the experimental output depends on one input). Illustrative				
	examples from engineering field, multiple regression analysis. (When the				
Module-1	experimental output depends on two inputs).	7 Hours			
		, 110415			
	Probability: Discrete Random Variables: Definitions of PDF &				
	CDF:Expectation and Variance:Binominal pdf- Illustrative examples.				
	Self-study/Applications: Poisson probability distribution function-				
	Illustrative examples.				
	Continuous Random Variables: Definition of PDF and CDF,				
	Expectation and Variance, illustrative examples				
	Probability distribution: Exponential ndf Normal/Gaussian ndf				
	Discussion on the choice of DDE Illustrative examples from engineering				
Module–2	Discussion on the choice of PDF. Industrative examples from engineering	7 Hours			
	neid.				
	Self-study/Applications:Uniform pdf, Current measurement problems,				
	Digital transmission channel Detection of signal.				
	Confidence intervals & Hypothesis analysis: Introduction, Testing a				
	hypothesis, central limit theorem-statement, Level of significance, Simple				
	sampling of attributes, confidence intervals, Test of significance for large				
Module_3	samples, Comparison of large samples, Student's t-distribution, Chi-square				
	distribution.	, 110015			
	Self-study/Applications: Propellant burning rate process-capacity				
	problem drying time problem. Two catalyst effect on chemical reaction				
	Joint Probability Distribution & Stochastic Processes: Concept of joint				
	probability Joint distributions of discreterandom variables. Independent				
	random variables_problems_ Joint expectation_co_variance_and correlation				
	rundom variables problems. John expectation, co variance and correlation.				
Module-4	Markov Chains: Introduction, stochastic matrices, fixed probability	7 Hours			
	vectors and regular stochastic matrices. Application of Markov chain to				
	determine the voting tendencies.				
	Self-study/Applications: Estimating the population distribution of a city				
	due to migration.				
<u> </u>	<u> </u>				

## **DEPARTEMENT OF MATHEMATICS**

#### Note - Theorems and properties without proof. Applicable to all the modules.

#### **Text Books:**

- 1. Dr. B. S. Grewal, Higher Engineering Mathematics, Khanna Publications, 44thEdition, 2016.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley India Pvt. Ltd 9th edition, 2014.
- 3. B V Ramana Higher Engineering Mathematics, Tata McGraw Hill Publications, 2nd edition, 2007.

#### **Reference Books:**

- 1. Scott L.Miller, DonaldG. Childers: "Probability and Random Process with application to Signal Processing", Elsevier Academic Press, 2nd Edition, 2013.
- Statistics for engineers and Scientists, William Navide, Mc-Graw hill education, India pvt. Ltd., 3rd edition 2014.
- T.Veerarajan: "Probability, Statistics and Random Process", 3rd Edition, Tata McGraw Hill Co., 2008.
- Theory and problems of probability, Seymour Lipschutz and marclarslipson, Schaum out line series, 2nd edition.

#### **ACTIVITIES:**

- 1. Negative binomial distribution: Failure of server's problems,
- 2. Poissondistribution: Contamination problem, flaws in wires.
- 3. Exponential distribution: lack of memory property.
- 4. Continuous random variable: Shaft conforms.
- 5. Continuous random variable: detection of signal, Digital transmission channel.
- 6. Hypothesis analysis Depression treatment.
- 7. Hypothesis analysis defect in printed circuit board.
- 8. Confidence levels: Doping the cement with lead effect on percentage of calcium.
- Current measurement problems, Propellant burning rate, process-capacity problem, drying time problem, Two catalyst effect on chemical reaction.
- 10. Application of Markov chain in estimating the population distribution of a city due to migration.
- 11. Application of Multiple regression when exp. output depends on 3, 4,.5 inputs.
- 12. Application of Markov chain to determine the voting tendencies.
- 13. Curve fitting.