Academic year 2023-2024

I Year scheme & syllabus

Course Code	Course Title		Credits			
		L	Т	Р	Total credits	Hours
23MATS11	Mathematics for Computer Science Engineering stream -1	2	2	2	4	6
23MATC11	Mathematics for Civil Engineering stream -1	2	2	2	4	6
23MATE11	Mathematics for Electrical and Electronics Engineering stream-1	2	2	2	4	6
23MATM11	Mathematics for Mechanical Engineering -1	2	2	2	4	6
23MATS21	Mathematics for Computer Science Engineering stream -2	2	2	2	4	6
23MATC21	Mathematics for Civil Engineering-2	2	2	2	4	6
23MATE21	Mathematics for Electrical and Electronics Engineering stream-2	2	2	2	4	6
23MATM21	Mathematics for Mechanical Engineering -2	2	2	2	4	6

II Year scheme & syllabus

Course	Course Title	Credits				
Coue		L	Т	Р	Total credits	Hours
22MA301	Mathematics for Computer Science Engineering	2	2	0	3	4
22MA301	Mathematics for Information Science Engineering	3	2	0	4	5
22MA301	Mathematics for Electronics and Communication Engineering	3	2	0	4	5
22MA301	Mathematics for Electrical and Electronics Engineering	2	2	0	3	4
22MA301	Mathematics for Mechanical Engineering	2	2	0	3	4
22MA401	Statistics and Probability for Computer Science	2	2	0	3	4
22MA401	Linear algebra and Applications for ALML and CSBS	2	2	0	3	4
22MA302	Discrete Mathematical Structures (Elective course - IS)	2	2	0	3	4
22MA402	Discrete Mathematical Structures (Elective course - CS/ALML)	2	2	0	3	4
22AEC401	Statistics with R Lab for machine learning (Ability Enhancement Course - E&E)	0	0	2	1	2
22BCM301	Bridge Course Mathematics - I	3	0	0	0	3
22BCM401	Bridge Course Mathematics - II	3	0	0	0	3

Open	Elective	scheme	& sy	yllabus
------	----------	--------	------	---------

Course Code	Open Electives	Credits				
		L	T	Р	Total credits	Hours
210EMA61	Operation Research	3	0	0	3	3
210EMA62	Linear Algebra and numerical methods	3	0	0	3	3
210EMA63	Numerical Methods	3	0	0	3	3
210EMA64	A64 Linear Programming		0	0	3	3
210EMA65	EMA65 Graph Theory and Combinatorics		0	0	3	3
210EMA69	Linear Algebra and Statistics With python/R Programming	2	0	2	3	4

MALNAD COLLEGE OF ENGINEERING, HASSAN (An Autonomous Institution Affiliated to VTU, Belgaum)

Autonomous Programme

Bachelor of Engineering

DEPARTMENT OF MATHEMATICS

SYLLABUS

I & II Semester (2023 Admitted Batch)

(1st year)

Academic Year 2023-24

PROGRAM OUTCOMES (POs)

Engineering Graduates will be able to:

- 1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and computer science and business systems to the solution of complex engineering and societal problems.
- 2. **Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering and business problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **3.** Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **5.** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. The engineer and society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering and business practices.
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in business societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering and business practices.
- **9. Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **10. Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. Project management and finance: Demonstrate knowledge and understanding of the engineering, business and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **12. Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

<u>Scheme of evaluation (Theory courses)</u>

Assessment	Marks
Three CIE's	30
Integrated LAB	20
SEE	50
Total	100

Scheme of evaluation (lab courses-IPCC)

Assessment	Marks
Manual solving	04
Record writing and observation	03
Executing the Programme with correct output	08
Final CIE	05
Total	20

Examination	Maximum marks	Minimum marks to qualify
CIE	50	20(12 +8)
SEE	50	20

Cours	e Title	Mathematics for C	omputer Science E	ngineering stre	am -1		
Cours	e Code	23MATS11	Course T	уре	IPCC		
SEE d	uration	3hours	(L-T-P-C	() ()	(2-2-2-4)		
CIE(T	heory) marks	30	Hours / V	Veek	06		
CIE(P	ractical)/Activity	20	SEE marks		50		
marks							
Course Objective : To train the students to acquire knowledge in calculus and numerical methods so as to solve basic engineering application problems. Course Outcomes (COs): At the end of course, student will be able to:							
COs	Outcomes			POs	PSOs		
CO1	Compute Taylor set curvature, and solve integrals, Counting evolutes, errors and	ries, partial derivativ simple problems com principle, bayes theo approximation.	res, pedal equation, nected with multiple rem on probability,	PO1	-		
CO2	Inspect for extreme values [the maximum output of a function (experimental data-)], analyze the region of integration connected with multiple integrals so as to determine the area, volume.			PO1, PO2	-		
CO3	Apply the numerica region, root (input) missing input or ou (interpolation/extrap	I methods to compu of an equation for tput of the given ex olation).	tte: The area of a the given output, aperimental data	PO1	-		
CO4	Model the real-l problems and solve	ife problems/engine the same.	eering application	PO1, PO2	-		
CO5	Write the program in connected with calc equations ,vector ca correct output.	n python for the mathe ulus, numerical met alculus, execute the	ematical procedures thods, differential same and provides	PO1, PO2	-		

11 8		PO1	PO2
	CO1	3	-
	CO2	3	2
	CO3	3	-
	CO4	3	2
	CO5	3	2
Course Contents:			

MODULE –1	12 Hrs.

Differential Calculus: Definition of average growth rate and its illustrative examples. Definition of differentiability, Statement of Taylor's theorem, Taylor's series for a function of one variable -Illustrative examples. Polar coordinates, Polar curves, angle between the radius vector and the tangent, angle between two curves, Pedal equations. Curvature and Radius of curvature - Cartesian.

Applications - Optimization (extremevalues of a single variable) - Extremevalues of a single variablecost and revenue.

Self Study:Brief introduction to evolutes and involutes. Indeterminate forms - L'Hospital's rule, problems. Extreme values of a single variable.

MODULE –2	13 Hrs.
Partial differentiation: Definition of Partial derivative, Physical and geometrical interp	retation of

partial differentiation and Illustrative examples. Evaluation of Jacobians, Statement of Taylor theorem for a function of two variables and illustrative examples on Taylor's series. Expansion of a function as a Maclaurin's series for function of one variable and two variables-illustrative examples.Extreme values of functions of two variables

Applications -. To express the experimental data interms of quadratic equation (function of one variable) and hence to find the maximum value of the experimental data (curve fitting). Application of total derivative- controlling sag in an uniformly loaded beam.

Self Study:Lagrange's method of undermined multifliers.Errors and approximations- Application in Computer Science Engineering.

MODULE –3

13 Hrs.

Numerical Methods: Numerical Solution of algebraic & transcendental equations by Bisection method, Newton Raphson method, Finite differences- Interpolation-Definition of forward, backward differences, Newton's forward and backward interpolation formulae, Lagrange's interpolation formulae.

Numerical Integration: Evaluation of a line integral by Trapezoidal rule, Simpson's 1/3rd and 3/8th rule, Weddle's rule. Illustrative examples from engineering field.

Applications- General applications connected with business cost and revenue.Errors in finite precision.

Self Study: Inverse Lagrange's interpolation formula, central difference formula- Bessel's formula to find the relation between the input and output of an experimental data using suitable interpolation formula. Application of arc length-application to make sheets of corrugated iron roofing. Approximate solutions of ODE related to Computer Science Engineering.

MODULE – 4

12 hrs.

Multiple Integrals: Introduction to coordinate systems. Double integrals in Cartesian & Polar form. Application to find area and volume. Evaluation of triple integrals in Cartesian co-ordinate system.

Probability Theory: Counting principle - sum rule, product rule, permutation and combination, review of probability- applications of Baye's theorem.

Application - applications connected with Computer science. to find mass and moment for the thin plate covering the region in the xy plane.

Self-Study:. Definitions and properties of Beta and gamma functions, Simple Problems,

List of Programmes:

- 1. Computation of roots using bisection method, Newton Raphson method.
- 2. To compute the extreme values of a function of two variables.
- 3. Interpolation by- Newton's forward & Lagrange's interpolation formula.
- 4. Numerical integration-line integral (Trapezoidal rule, Weddle's rule)
- 5. Numerical integration- line integral (Simpson's 1/3rd rule, Simpson's 3/8th rule)
- 6. Solution of first order differential equation and plotting the graph.
- 7. Finding angle between polar curves & computing the curvature of a given curve.
- 8. Finding partial derivatives, Jacobians.
- 9. Computing area by line integral & double integral.
- 10. Expressing the function of one variable & two variables using Taylor's & Maclaurin's series.

NOTE:

1. Proofs are not required for any theorems and properties.

2. There should not be any questions from self study part in semester End Examination.

Text Books :

1. Dr. B. S. Grewal, Higher Engineering Mathematics, Khanna Publications, 44th edition, 2016.

2. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley India P.v.t. Ltd. 8th Edition, (Wiley student edition) 2004.

3. Thomas Finney, Calculus, 9th edition, Pearson education, 2002

Discrete mathematics by J.K. Sharma.

Reference Books:

1. R. K. Jain and S. R. K. Jain & S. R. K. Iyengar, Numerical methods, New age International p.v.t. Publishers, 6th edition, 2014.

2. N.P. Bali and Manish Goyal, A textbook of Engineering Mathematics, Laxmi Publications, Reprint, 2010.

- <u>http://nptel.ac.in/courses.phd?disciplineID=111</u>
- http://www.class-central.com/subject/math(MOOCs)
- http://academicerath.org/

Cours	Course Title Mathematics for Civil Engineering stream -1						
Cours	e Code	23MATC1	1	Cou	rse T	vpe	IPCC
SEE d	luration	3hours		(L-]	Г-Р-С	() ()	(2-2-2-4)
CIE(1	Theory) marks	30		Hou	irs / V	Veek	06
CIE(P marks	Practical)/Activity	20		SEF	E mar	ks	50
Course Objective: To train the students to acquire knowledge in calculus and numerical methods so as to solve basic engineering application problems. Course Outcomes (COs): At the end of course, student will be able to:							
COs	Outcomes					POs	PSOs
CO1	Compute Taylor series, partial derivatives, pedal equation, curvature, and solve simple problems connected with multiple integrals, evolutes, errors and approximation.				tion, tiple	PO1	-
CO2	D2 Inspect for extreme values [the maximum output of a function (experimental data-)], analyze the region of integration connected with multiple integrals so as to determine the area, volume.				ction ation area,	PO1, PO2	-
CO3	3 Apply the numerical methods to compute: The area of a region, root (input) of an equation for the given output, missing input or output of the given experimental data (interpolation/extrapolation).			f a out, lata	PO1	-	
CO4	Model the real-life and solve the sam	problems/eng ne.	ineering app	lication prob	lems	PO1, PO2	-
CO5Write the program in python for the mathematical procedures connected with calculus, numerical methods, differential equations, vector calculus, execute the same and provides correct output.				PO1, PO2	-		
CO-PC	Mapping:						
0			PO1	PO2]	
		CO1	3	-		1	
		CO2	3	2		1	
		CO3	3	-		1	

CO4

CO5

Course Contents: MODULE -1 12 Hrs. Differential Calculus: Definition of average growth rate and its illustrative examples. Definition of differentiability, Statement of Taylor's theorem, Taylor's series for a function of one variable -Illustrative examples. Polar coordinates, Polar curves, angle between the radius vector and the tangent, angle between two curves, Pedal equations. Curvature and Radius of curvature - Cartesian. Applications -Stiffness of a beam, strength of a beam. Self Study:Brief introduction to evolutes and involutes. Indeterminate forms - L'Hospital's rule, problems. Extreme values of a single variable. MODULE -2 13 Hrs. Partial differentiation: Definition of Partial derivative, Physical and geometrical interpretation of partial differentiation and Illustrative examples. Evaluation of Jacobians, Statement of Taylor theorem for a function of two variables and illustrative examples on Taylor's series. Expansion of a function as a Maclaurin's series for function of one variable and two variables-illustrative examples.Extreme values of functions of two variables. Applications - To express the experimental data interms of quadratic equation (function of one variable) and hence to find the maximum value of the experimental data (curve fitting). Application of total derivative- controlling sag in an uniformly loaded beam.

Self Study: Lagrange's method of undermined multifliers. Errors and approximations- Application in Civil engineering.

13 Hrs

MODULE -3

Numerical Methods: Numerical Solution of algebraic & transcendental equations by	Bisection
method, Newton Raphson method, Finite differences- Interpolation-Definition of forward	, backward
differences, Newton's forward and backward interpolation formulae, Lagrange's in	terpolation
formulae.	

Numerical Integration: Evaluation of a line integral by Trapezoidal rule, Simpson's 1/3rd and 3/8th rule, Weddle's rule. Illustrative examples from engineering field.

Applications - finding projectile height from its acceleration, initial velocity and initial position. Estimation of discharge in a stream – an application to hydrology, estimation of discharge in a stream – an application to surveying. Moment, mass and center of mass of a thin rod.

Self Study: Inverse Lagrange's interpolation formula, central difference formula- Bessel's formula to find the relation between the input and output of an experimental data using suitable interpolationformula. Application of arc length-application to make sheets of corrugated iron roofing. Approximate solutions of ODE related to Civil Engineering.

MODULE – 4	12 hrs.			
Multiple Integrals: Introduction to coordinate systems. Double integrals in Cartesian &	Polar form.			
Application to find area and volume. Evaluation of triple integrals in Cartesian co-ordinate system.				
Evaluation of triple integrals in cylindrical and Spherical co-ordinate system.				
Applications - to find mass and moment for the thin plate covering the region in the xy plane. Mass				
and moment for the object in space. Moment of inertia of a circle about its diametric	cal axis- an			
application to engineering Mechanics, computation of deflection of beams using double	e integral.			
Self-Study: Definitions and properties of Beta and gamma functions, Simple Problems.				

List of Programes:

- 1. Computation of roots using bisection method, Newton Raphson method.
- 2. To compute the extreme values of a function of two variables.
- **3.** Interpolation by- Newton's forward & Lagrange's interpolation formula.
- 4. Numerical integration- line integral (Trapezoidal rule, Weddle's rule)
- 5. Numerical integration- line integral (Simpson's 1/3rd rule, Simpson's 3/8th rule)
- 6. Solution of first order differential equation and plotting the graph.
- 7. Finding angle between polar curves & computing the curvature of a given curve.
- 8. Finding partial derivatives, Jacobians.
- 9. Computing area by line integral & double integral.
- 10. Expressing the function of one variable & two variables using Taylor's & Maclaurin's series.

NOTE:

- 1. Proofs are not required for any theorems and properties.
- 2. There should not be any questions from self study part in semester End Examination.

Text Books :

1. Dr. B. S. Grewal, Higher Engineering Mathematics, Khanna Publications, 44th edition, 2016.

2. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley India P.v.t. Ltd. 8th Edition, (Wiley student edition) 2004.

3. Thomas Finney, Calculus, 9th edition, Pearson education, 2002

Reference Books:

1.R. K. Jain and S. R. K. Jain & S. R. K. Iyengar, Numerical methods, New age International p.v.t. Publishers, 6th edition, 2014.

N.P. Bali and Manish Goyal, A textbook of Engineering Mathematics, Laxmi Publications, Reprint, 2010.

- <u>http://nptel.ac.in/courses.phd?disciplineID=111</u>
- http://www.class-central.com/subject/math(MOOCs)
- http://academicerath.org/

Cours	se Title	Mathematics for Electrical and Electronics Engineering stream-1					
Cours	se Code	23MATE11		Course Type		IPC	С
SEE d	luration	3hours		(L-T-P-C)		(2-2-	-2-4)
CIE(1	Theory)	30		Hours / Wee	ĸ	06	
marks CIF(E	8 Practical)/Acti	20		SFF marks		50	
vitv m	narks	20				50	
Course to solve Course COs CO1	 Objective: To basic engineerie Outcomes (CC Outcomes Compute Tay curvature, and integrals, Cou evolutes, error Inspect for ext 	train the students ing application pro Ds): At the end of lor series, partial solve simple prob unting principle, b rs and approximation	to acquire knowns. course, stude derivatives, elems connect ayes theorem ion.	nowledge in calc ent will be able t , pedal equation eted with multipl m on probability	POs PO1 PO1	PSOs	so as
	(experimental connected with area, volume.	data-)], analyze th multiple integra	the region als so as to	of integration determine th	n e PO1, PO2	-	
CO3	Apply the nu region, root (missing input (interpolation/	merical methods (input) of an equal, or output of the (extrapolation).	to compute: ation for the given expe	The area of a e given output, erimental data	PO1	-	
CO4	Model the problems and	real-life proble	ems/engineer e.	ring applicatio	n PO1, PO2	-	
CO5	Write the prog connected wi equations, ver correct output	gram in python for th calculus, nun ctor calculus, exe	the mathem nerical mether secute the same	natical procedure nods, differentia me and provide	PO1, PO2	-	
CO-PC	Mapping:	Γ	1			I	
			PO1	PO2			
		CO1	3	-			
		CO2	3	2			
		CO3	3	-			

CO4

CO5

Course Contents: MODULE -1 12 Hrs. Differential Calculus: Definition of average growth rate and its illustrative examples. Definition of differentiability, Statement of Taylor's theorem, Taylor's series for a function of one variable -Illustrative examples. Polar coordinates, Polar curves, angle between the radius vector and the tangent, angle between two curves, Pedal equations. Curvature and Radius of curvature – Cartesian. **Applications** -Optimization (extremevalues of a single variable)- to find the peak current in an circuit. Self Study:Brief introduction to evolutes and involutes. Indeterminate forms - L'Hospital's rule, problems. Extreme values of a single variable. 13 Hrs. **MODULE –2** Partial differentiation: Definition of Partial derivative, Physical and geometrical interpretation of partial differentiation and Illustrative examples. Evaluation of Jacobians, Statement of Taylor theorem for a function of two variables and illustrative examples on Taylor's series. Expansion of a function as a Maclaurin's series for function of one variable and two variables-illustrative examples.Extreme values of functions of two variables. Applications - To express the experimental data interms of quadratic equation (function of one variable) and hence to find the maximum value of the experimental data (curve fitting). Application of total derivative- controlling sag in an uniformly loaded beam. Self Study: Lagrange's method of undermined multifliers. Errors and approximations- Application in Electrical Engineering. **MODULE –3** 13 Hrs. Numerical Methods: Numerical Solution of algebraic & transcendental equations by Bisection method, Newton Raphson method, Finite differences- Interpolation-Definition of forward, backward differences, Newton's forward and backward interpolation formulae, Lagrange's interpolation formulae.

Numerical Integration: Evaluation of a line integral by Trapezoidal rule, Simpson's 1/3rd and 3/8th rule, Weddle's rule. Illustrative examples from engineering field.

Applications- Application of root finding- ion concentration, Forcing electrons together, To estimate the total amount of pollutant produced due to production of electricity by burning oil.

Self Study: Inverse Lagrange's interpolation formula, central difference formula- Bessel's formula to find the relation between the input and output of an experimental data using suitable interpolation formula. Application of arc length-application to make sheets of corrugated iron roofing. Approximate solutions of ODE related to Electrical Engineering.

MODULE – 4

Multiple Integrals: Introduction to coordinate systems. Double integrals in Cartesian & Polar form. Application to find area and volume. Evaluation of triple integrals in Cartesian co-ordinate system.

Probability Theory: Counting principle - sum rule, product rule, permutation and combination, review of probability- applications of Baye's theorem.

Application - Brief note on the applications connected with field and wave theory. Calculation optimal power in an electrical circutes.

Self-Study: Definitions and properties of Beta and gamma functions, Simple Problems.

List of Programmes:

- 1. Computation of roots using bisection method, Newton Raphson method.
- 2. To compute the extreme values of a function of two variables.
- 3. Interpolation by- Newton's forward & Lagrange's interpolation formula.
- 4. Numerical integration- line integral (Trapezoidal rule, Weddle's rule)
- 5. Numerical integration- line integral (Simpson's 1/3rd rule, Simpson's 3/8th rule)
- 6. Solution of first order differential equation and plotting the graph.
- 7. Finding angle between polar curves & computing the curvature of a given curve.
- 8. Finding partial derivatives, Jacobians.
- 9. Computing area by line integral & double integral.
- 10. Expressing the function of one variable & two variables using Taylor's & Maclaurin's series.

NOTE:

1. Proofs are not required for any theorems and properties.

2. There should not be any questions from self study part in semester End Examination.

Text Books :

1. Dr. B. S. Grewal, Higher Engineering Mathematics, Khanna Publications, 44th edition, 2016.

2. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley India P.v.t. Ltd. 8th Edition, (Wiley student edition) 2004.

3. Thomas Finney, Calculus, 9th edition, Pearson education, 2002

Reference Books:

<u>1.</u> R. K. Jain and S. R. K. Jain & S. R. K. Iyengar, Numerical methods, New age International p.v.t. Publishers, 6th edition, 2014.

2. N.P. Bali and Manish Goyal, A textbook of Engineering Mathematics, Laxmi Publications, Reprint, 2010.

- <u>http://nptel.ac.in/courses.phd?disciplineID=111</u>
- http://www.class-central.com/subject/math(MOOCs)
- http://academicerath.org/

Cours	e Title	Mathematics for Mechanical Engineering -1					
Cours	e Code	23MATM11	(Course Type		IPCC	
SEE d	uration	3hours	((L-T-P-C)		(2-2-2-4)	
CIE(T	`heory)	30	H	Iours / Week		06	
marks	i						
CIE(P	ractical)/Act	20	S	SEE marks		50	
ivity n	narks						
Course to solve Course	Objective: To basic engineer Outcomes (CO	train the students to ing application prob Os): At the end of c	o acquire knov olems. ourse, student	vledge in calcu will be able to:	lus and numer	rical methods so as	
COs	Outcomes				POs	PSOs	
C01	Compute Tay	lor series, partial	derivatives, p	edal equation,			
	curvature, and	l solve simple probl	ems connected	l with multiple	PO1		
	integrals evol	lutes errors and an	rovimation	1	101	-	
	integrais, even	futes, errors and app					
CO2	Inspect for ex	treme values [the m	aximum outpu	t of a function			
	(experimental	data-)], analyze t	the region	of integration			
	connected wi	th multiple integral	ls so as to det	termine the	PO1, PO2	-	
	area volume						
	area, volume.						
CO3	Apply the nu	imerical methods to	o compute: T	he area of a			
	region, root	(input) of an equation	tion for the g	given output,			
	missing input	out, or output of the given experimental data				-	
	(interpolation	/extrapolation).					
	Model the	real-life problem	ns/engineering	application			
04	nrohloma on	d calva the same		, uppheadon	PO1, PO2	-	
	problems and						
CO5	Write the prog	gram in python for t	the mathemation	cal procedures			
	connected w	ith calculus, nume	erical method	s, differential			
	equations, ve	ctor calculus, exec	tute the same	and provides	PO1, PO2	-	
	correct output	t.					
CO-PO	Mapping:						
			PO1	PO2			
		CO1	3	-			
		CO2	3	2	_		
		CO3	3	-			
		CO4	3	2	-		
		CO5	3	2	-		

L

Course Contents: 12 Hrs. **MODULE –1** Differential Calculus: Definition of average growth rate and its illustrative examples. Definition of differentiability, Statement of Taylor's theorem, Taylor's series for a function of one variable -Illustrative examples.Polar coordinates, Polar curves, angle between the radius vector and the tangent, angle between two curves, Pedal equations. Curvature and Radius of curvature - Cartesian. Applications -Stiffness of a beam, strength of a beam. Self Study: Brief introduction to evolutes and involutes. Indeterminate forms - L'Hospital's rule, problems. Extreme values of a single variable. MODULE -2 13 Hrs. Partial differentiation: Definition of Partial derivative, Physical and geometrical interpretation of partial differentiation and Illustrative examples. Evaluation of Jacobians, Statement of Taylor theorem for a function of two variables and illustrative examples on Taylor's series. Expansion of a function as a Maclaurin's series for function of one variable and two variables-illustrative examples. Extreme values of functions of two variables. Applications - Applications of Optimization (extremevalues of a single variable)metal fabrication. Application of total derivative- controlling sag in an uniformly loaded beam. Self Study: Lagrange's method of undermined multifliers. Errors and approximations- Application in Mechanical Engineering. MODULE – 3 13 hrs. Numerical Methods: Numerical Solution of algebraic & transcendental equations by Bisection method, Newton Raphson method, Finite differences- Interpolation-Definition of forward, backward differences, Newton's forward and backward interpolation formulae, Lagrange's interpolation formulae.

Numerical Integration: Evaluation of a line integral by Trapezoidal rule, Simpson's 1/3rd and 3/8th rule, Weddle's rule. Illustrative examples from engineering field.

Applications - Amount of work required to put a satellite in an orbit. To estimate the length of the tank in a design of an airoplane wich has a constantan cross sectional area in each wing.

Self Study: Inverse Lagrange's interpolation formula, central difference formula- Bessel's formula to find the relation between the input and output of an experimental data using suitable interpolation formula. Application of arc length-application to make sheets of corrugated iron roofing. Approximate solutions of ODE related to Mechanical Engineering.

MODULE – 4	12 hrs.
Multiple Integrals: Introduction to coordinate systems. Double integrals in Cartesian &	z Polar form.
Application to find area and volume. Evaluation of triple integrals in Cartesian co-ord	inate system.
Evaluation of triple integrals in cylindrical and Spherical co-ordinate system.	
Applications - to find mass and moment for the thin plate covering the region in the xy	plane. Mass
and moment for the object in space. Moment of inertia of a circle about its diametric	cal axis- an
application to engineering Mechanics, computation of deflection of beams using double	e integral
Self-Study: Definitions and properties of Beta and gamma functions, Simple Problems.	
List of Programmes:	
1. Computation of roots using - bisection method, Newton Raphson method.	
2. To compute the extreme values of a function of two variables.	
3. Interpolation by- Newton's forward & Lagrange's interpolation formula.	
4. Numerical integration- line integral (Trapezoidal rule, Weddle's rule)	
5. Numerical integration- line integral (Simpson's 1/3 rd rule, Simpson's 3/8 th rule)	
6. Solution of first order differential equation and plotting the graph.	
7. Finding angle between polar curves & computing the curvature of a given curve.	
8. Finding partial derivatives, Jacobians.	
9. Computing area by line integral & double integral.	
10. Expressing the function of one variable & two variables using Taylor's & Maclauri	n's series.
NOTE:	
1.Proofs are not required for any theorems and properties.	
2. There should not be any questions from self study part in semester End Examination.	
Text Books :	
1. Dr. B. S. Grewal, Higher Engineering Mathematics, Khanna Publications, 44th editio	n, 2016.
2. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley India P.v.t. Ltd. 8th Ed	lition, (Wiley
student edition) 2004.	
3. Thomas Finney, Calculus, 9th edition, Pearson education, 2002	
Reference Books:	
1. R. K. Jain and S. R. K. Jain & S. R. K. Iyengar, Numerical methods, New age Interr	national p.v.t.

Publishers, 6th edition, 2014.

N.P. Bali and Manish Goyal, A textbook of Engineering Mathematics, Laxmi Publications, Reprint, 2010.

- <u>http://nptel.ac.in/courses.phd?disciplineID=111</u>
- http://www.class-central.com/subject/math(MOOCs)
- http://academicerath.org/

Programming in Python

Course outcome of Mathematical procedures using Python Programme:

<u>CO5:</u> At the end of the course, students will be able to write the Programme in Python for the Mathematical procedures connected with calculus, numerical methods, differential equations, vector calculus, execute the same and provides correct output.

	PO1	PO2	P05
CO5	3	2	1

Course Title	Mathematics for Computer Science Engineering stream -2			
Course Code	23MATS21	Course Type	IPCC	
SEE duration	3 hour	(L-T-P-C)	(2-2-2-4)	
CIE(Theory) marks	30	Hours / Week	06	
CIE(Practicals)/Activity marks	20	SEE marks	50	

Course Objective: To train the students to acquire knowledge in differential equations and vector calculus, so as to solve basic engineering application problems.

Course Outcomes (COs): At the end of course, student will be able to

COs	Outcomes	POs	PSOs
CO1	Apply suitable methods to solve the simple problems connected with ordinary differential equations/partial differential equations and vector calculus, number theory.	PO1	-
CO2	Examine the higher order problems (more difficult problems) that are connected with differential equations/partial differential equations and solve.	PO1, PO2	-
CO3	Examine and compute the vector calculus problems/applications connected with gradient, divergence and curl.	PO1, PO2	-
CO4	Model the real-life problems/ Engineering application problems and hence solve the same.	PO1, PO2	-
C05	Write the program in python for the mathematical procedures connected with calculus, numerical methods, differential equations, vector calculus, execute the same and provides correct output.	PO1, PO2	-

	PO1	PO2
C01	3	-
CO2	3	2
CO3	3	2
CO4	3	2
CO5	3	2

Course Contents:

MODULE –1

Ordinary Differential Equations: First order first degree-Linear differential equations, Exact differential equations, Power series solutions.

Applicatons - Mathematical modelling through differential equations of first order first degree and solution-modelling of population growth, finding initial velocity of the space vehicle so that it has to escape from earth. Modelling of infected diseases, carbon dating half-life period, mixing problem involving one tank, two tank. Application of first order differential equation- Autonomous equation and population dynamics-Application- Logistic model- Natural growth of halibut population in certain areas of Pacific Ocean, Harvesting a renewable resource.

Self-Study- Bernoulli's differential equations, Reducible to exact differential equations -Integrating factors on $\frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right)$. Orthogonal trajectories in Cartesian form, illustrative examples Applications to find the orthogonal trajectories -streamlines of flow in the channel, curves of constant temperature in a body. Equi-potential lines in an electric field between two concentric cylinders.

MODULE –2

13 Hrs.

12 Hrs.

Ordinary Differential Equations: Higher order - Linear differential equation with constant coefficients - Solutions of homogeneous equations. Particular solution of non- homogenous differential equations by inverse differential operator method for the following standard forms, exponential, polynomial, trigonometric and their product. Method of variation of parameters to solve linear differential equation with constant coefficients. Matrix method to solve homogeneous differential equations of order 2, degree 1.

Applications -- Oscillatory Electrical circuit, LC Circuit, LCR Circuit, LC Circuit with e.m.f, LCR Circuit with e.m.f – Electro-Mechanical Analogy.

Self-Study- Method of undetermined coefficients, LDE with variable coefficients (Cauchy's and Legendre's differential equations).

MODULE –3	13 Hrs.
Numerical solution of first order, first degree ODE: Taylor's series method, Runge-	Kutta (RK)
method of fourth order, Milne's predictor corrector methods, and Adam-Bashforth method	od.
Partial Differential Equations: Solving PDE by variable separable method, solution	on of non-
homogeneous PDE by direct integration. Numerical solution of a Laplace equation, Poisso	on equation
by finite difference approximation method using standard five point formula, diagonal for	ormula and
iterative formulas.	

Applications - To find all possible solutions of one-dimensional heat equation and two-dimensional wave equation.

Self-Study- Homogeneous PDEs involving derivatives with respect to one independent variable only. Solution of Lagrange's linear PDE. To find all possible solutions of two-dimensional Laplace equation. Application connected with Computer science Engineering.

10DULE – 4

N

12 hrs.

Vector Calculus: Velocity & acceleration of a vector point function, moment of a force, velocity of a rotating body, rotation of a rigid body, Gradient, divergence & curl. Physical & Geometrical Interpretation of dot product, Gradient, divergence & curl, irrotational vectors, illustrative examples from engineering field.

Number theory -Properties of integers- division algorithm, GCD and LCM, Congruence relations, residue classes, congruence equations, applications of congruences on cryptography.

Applications -Modelling projectile motion(vector approach).

Self-Study- Curvilinear coordinates: Scale factors, base vectors, and transformation between Cartesian and curvilinear systems, orthogonality- Problems.

List of Programmes:

- 1. Solution of first order ordinary differential equation using Taylor series & Range-kutta method.
- 2. Solution of partial differential equation (Laplace & Poisson equations)
- **3.** Finding gradient, divergence and curl.
- 4. Computation of area, volume and center of gravity.
- 5. Verification of Green's theorem in vector integration.
- 6. Solution of system of equations by Gauss elimination method.
- 7. Solution of 2nd order differential equations (by variation of parameter method).
- 8. Numerical solution of simultaneous differential equations by Range-kutta method.
- 9. Solution of system of linear equations using Gauss-Seidal iteration method.
- **10.** Product of matrices & finding Inverse of a matrix.

NOTE:

1.Proofs are not required for any theorems and properties.

2. There should not be any questions from self study part in semester End Examination.

Text Books :

1. Dr. B. S. Grewal, Higher Engineering Mathematics, Khanna Publications, 44th edition, 2016.

2. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley India Pvt. Ltd. 8th Edition (Wiley student edition) 2004.

3. Calculus by Thomas Finney, 9th edition, Pearson education, 2002.

Reference Books:

1. R K. Jain and S. R. K. Jain & S. R. K. Iyengar, Numerical methods, New age international pvt. Publishers, 6thedition, 2014.

2. N.P. Bali and Manish Goyal, A textbook of Engineering Mathematics, Laxmi Publications, Reprint, 2010

- <u>http://nptel.ac.in/courses.phd?disciplineID=111</u>
- http://www.class-central.com/subject/math(MOOCs)
- http://academicerath.org/

Course Title	Mathematics for Civil Engineering-2			
Course Code	23MATC 21	Course Type	IPCC	
SEE duration	3 hour	(L-T-P-C)	(2-2-2-4)	
CIE(Theory) marks	30	Hours / Week	06	
CIE(Practical's)/Activ ity marks	20	SEE marks	50	

Course Objective: To train the students to acquire knowledge in Differential equations and vector calculus so as to solve basic engineering application problems.

Course Outcomes (COs): At the end of course, student will be able to:

COs	Outcomes	POs	PSOs
CO1	Apply suitable methods to solve the simple problems connected with ordinary differential equations/partial differential equations and vector calculus.	PO1	-
CO2	Examine the higher order problems (more difficult problems) that are connected with differential equations/partial differential equations and solve.	PO1, PO2	-
CO3	Examine and compute the vector calculus problems/applications connected with gradient, divergence and curl.	PO1, PO2	-
CO4	Model the real-life problems/ Engineering application problems and hence solve the same.	PO1, PO2	-
CO5	Write the program in python for the mathematical procedures connected with calculus, numerical methods, differential equations, vector calculus, execute the same and provides correct output.	PO1, PO2	-

CO-PO Mapping:

	PO1	PO2
CO1	3	-
CO2	3	2
CO3	3	2
CO4	3	2
CO5	3	2

Course Contents:

MODULE –1

12 Hrs.

Ordinary Differential Equations: First order first degree-Linear differential equations, Exact differential equations,

Applicatons - Mathematical modelling through differential equations of first order first degree and solution-modelling of population growth, finding initial velocity of the space vehicle so that it has to escape from earth. Modelling of infected diseases, carbon dating half-life period, mixing problem involving one tank, two tank. Application of first order differential equation- Autonomous equation and population dynamics-Application- Logistic model- Natural growth of halibut population in certain areas of Pacific Ocean, Harvesting a renewable resource.

Self-Study-Bernoulli's differential equations, Reducible to exact differential equations - Integrating factors on $\frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right)$, Orthogonal trajectories in Cartesian form, illustrative examples. Applications to find the orthogonal trajectories -streamlines of flow in the channel, curves of constant temperature in a body. Equi-potential lines in an electric field between two concentric cylinders.

MODULE -213 Hrs.Ordinary Differential Equations: Higher order - Linear differential equation with constant
coefficients - Solutions of homogeneous equations. Particular solution of non- homogenous differential
equations by inverse differential operator method for the following standard forms, exponential,
polynomial, trigonometric and their product. Method of variation of parameters to solve linear
differential equation with constant coefficients. Matrix method to solve homogeneous differential
equations of order 2, degree 1.

Applications - Mechanical Vibrations-A Spring mass system $mu^{II}(t) + ku^{I}(t) + gu(t) = f(t)$ -Undamped free vibrations, damped free vibrations, forced vibrations with damping, forced vibrations without damping.

Self-Study- Method of undetermined coefficients, LDE with variable coefficients (Cauchy's and Legendre's differential equations). Mechanical system and transmission lines.

MODULE –3	13 Hrs.

Numerical solution of first order, first degree ODE: Taylor's series method, Runge-Kutta (RK) method of fourth order, Milne's predictor corrector methods, Adam-Bash forth method.

Partial Differential Equations: Solving PDE by variable separable method. Solution of nonhomogeneous PDE by direct integration. Numerical solution of a Laplace equation, Poisson equation by finite difference approximation method using standard five point formula, diagonal formula and iterative formulas.

Applications - To find all possible solutions of one-dimensional heat equation and two-dimensional wave equation. Application connected with Civil Engineering.

Self-Study- Homogeneous PDEs involving derivatives with respect to one independent variable only. Solution of Lagrange's linear PDE. To find all possible solutions of two-dimensional Laplace equation.

MODULE - 412 hrs.Vector Calculus: Velocity & acceleration of a vector point function, moment of a force, velocity of arotating body, rotation of a rigid body, Gradient, divergence & curl. Physical & Geometrical

Interpretation of dot product, Gradient, divergence & curl, irrotational vectors, illustrative examples from engineering field.

Nonlinear differential equations: Introduction to general and singular solutions, Solvable for p only, Clairaut's equations, reducible to Clairaut's equations - Finding the solution by the method of undetermined coefficients.

Applications -Modelling projectile motion(vector approach). Analysis of stream lines and electic potentials.

Self-Study- Curvilinear coordinates: Scale factors, base vectors, and transformation between Cartesian and curvilinear systems, orthogonality- Problems.

List of Programmes:

- 1. Solution of first order ordinary differential equation using Taylor series & Range-kutta method.
- 2. Solution of partial differential equation (Laplace & Poisson equations)
- **3.** Finding gradient, divergence and curl.
- 4. Computation of area, volume and center of gravity.
- 5. Verification of Green's theorem in vector integration.
- 6. Solution of system of equations by Gauss elimination method.
- 7. Solution of 2nd order differential equations (by variation of parameter method).
- 8. Numerical solution of simultaneous differential equations by Range-kutta method.
- 9. Solution of system of linear equations using Gauss-Seidal iteration method.

10. Product of matrices & finding Inverse of a matrix.

NOTE:

1. Proofs are not required for any theorems and properties.

2. There should not be any questions from self study part in semester End Examination.

Text Books :

1. Dr. B. S. Grewal, Higher Engineering Mathematics, Khanna Publications, 44th edition, 2016.

2. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley India Pvt. Ltd. 8th Edition (Wiley student edition) 2004.

3. Calculus by Thomas Finney, 9th edition, Pearson education, 2002.

Reference Books:

1. R K. Jain and S. R. K. Jain & S. R. K. Iyengar, Numerical methods, New age international pvt. Publishers, 6thedition, 2014.

2.N.P. Bali and Manish Goyal, A textbook of Engineering Mathematics, Laxmi Publications, Reprint, 2010

- <u>http://nptel.ac.in/courses.phd?disciplineID=111</u>
- http://www.class-central.com/subject/math(MOOCs)
- http://academicerath.org/

Course Title		Mathematics for Electrical and Electronics Engineering stream-2					
Cours SEE d	se Code luration	23MATE21Course Ty3 hour(L-T-P-C)		Гуре С)	IPCC (2-2-2-4)		
CIE(Theory) marks	30 Hours / V			Week	06	
CIE	Practical's)/Activity	20	20 SEE mar			50	
mark	s	~					
				I			
Course calculus Course	e Objective : To train t s so as to solve basic e e Outcomes (COs): At	the students engineering the end of o	to acquire kr application pr course, studen	owledge in di oblems. t will be able to	fferential equa	tions and vector	
COs	Outcomes				POs	PSOs	
CO1	Apply suitable met connected with o differential equations	hods to so ordinary d s and vector	lve the sin ifferential ec calculus, grap	nple problems quations/partial h theory.	PO1	-	
CO2	Examine the higher of that are connect differential equations	order proble eted with s and solve	PO1, PO2	-			
CO3	Examine and problems/application and curl.	compute as connected	the vector d with gradier	PO1, PO2	-		
CO4	Model the real-lif	e problem e solve the	s/ Engineerir same.	PO1, PO2	-		
C05	Write the program in connected with cal equations, vector ca correct output.	n python for culus, num llculus, exe	the mathemat herical method cute the same	PO1, PO2	-		
CO-PC) Mapping:		DO1	DOA			
			POI	PO2			
		CO1	3	-			
		CO2	3	2	-		
		<u>CO3</u>	3	2	-		
		CUS	3	۷			
		CO4	3	2			

CO5

Course Contents:		
	MODULE –1	12 Hrs.
Differential Equations (DE):	first order first degree-Linear differential equations,	Bernoulli's

differential equations, Exact differential equations, and Power series solutions.

Applicatons : Mathematical modelling through differential equations of first order first degree and solution-modelling of population growth, finding initial velocity of the space vehicle so that it has to escape from earth. Modelling of infected diseases, carbon dating half-life period, mixing problem involving one tank, two tank.

Application of first order differential equation- Autonomous equation and population dynamics-Application- Logistic model- Natural growth of halibut population in certain areas of Pacific Ocean, Harvesting a renewable resource.

Self-study-Reducible to exact differential equations - Integrating factors on $\frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial$

 $\frac{\partial M}{\partial y}$). Orthogonal trajectories in Cartesian form, illustrative examples Applications to find the orthogonal trajectories -streamlines of flow in the channel, curves of constant temperature in a body. Equi-potential lines in an electric field between two concentric cylinders.

MODULE –2

13 Hrs.

Linear differential equation with constant coefficients - Solutions of homogeneous equations. Particular solution of non- homogenous differential equations by inverse differential operator method for the following standard forms, exponential, polynomial, trigonometric and their product. Method of variation of parameters to solve linear differential equation with constant coefficients. Matrix method to solve homogeneous differential equations of order 2, degree 1.

Applications of second order, first degree Differential equations --

Oscillatory Electrical circuit, LC Circuit, LCR Circuit, LC Circuit with e.m.f, LCR Circuit with e.m.f – Electro-Mechanical Analogy. Applications of second order, first degree Differential equations – Transmission lines, Highway engineering.

Self-study-method of undetermined coefficients, LDE with variable coefficients (Cauchy's and Legendre's differential equations).

			MODU	LE –3								13	Hrs.
~	4	1	<i>(</i>) <i>(</i>)		т	1	•	•	.1	1 D	T7		(DIZ

Numerical solution of first order, first degree ODE: Taylor's series method, Runge-Kutta (RK) method of fourth order, Milne's predictor corrector methods.

Partial Differential Equations. Solving PDE by variable separable method, Solution of nonhomogeneous PDE by direct integration, Numerical solution of a Laplace equation, Poisson equation by finite difference approximation method using standard five point formula, diagonal formula and iterative formulas. **Applications:** Applications - To find all possible solutions of one-dimensional heat equation and twodimensional wave equation. Estimating the approximate solutions of ODE for electric circuits.

Self-Study- Homogeneous PDEs involving derivatives with respect to one independent variable only. Solution of Lagrange's linear PDE. To find all possible solutions of two-dimensional Laplace equation. Application connected with Electrical Engineering.

MODULE – 4	12 hrs.
MODULE – 4	12 hrs.

Vector Calculus: Velocity & acceleration of a vector point function, moment of a force, velocity of a rotating body, rotation of a rigid body, Gradient, divergence & curl. Physical& Geometrical Interpretation of dot product, Gradient, divergence & curl, irrotational vectors, illustrative examples from engineering field.

Graph theory: Introduction to graph theory, types of graphs, subgraphs, trees, spanning subgraphs, shortest path algorithms.

Applications:

Modelling projectile motion(vector approach), Analysis of streamlines and electric potentials.

Self – study: .**Curvilinear coordinates:** Scale factors, base vectors, and transformation between Cartesian and curvilinear systems, orthogonality-Problems.

List of Programmes:

- 1. Solution of first order ordinary differential equation using Taylor series & Range-kutta method.
- 2. Solution of partial differential equation (Laplace & Poisson equations)
- **3.** Finding gradient, divergence and curl.
- 4. Computation of area, volume and center of gravity.
- 5. Verification of Green's theorem in vector integration.
- 6. Solution of system of equations by Gauss elimination method.
- 7. Solution of 2nd order differential equations (by variation of parameter method).
- 8. Numerical solution of simultaneous differential equations by Range-kutta method.
- 9. Solution of system of linear equations using Gauss-Seidal iteration method.
- **10.** Product of matrices & finding Inverse of a matrix.

NOTE:

1. Proofs are not required for any theorems and properties.

2. There should not be any questions from self study part in semester End Examination.

Text Books :

1. Dr. B. S. Grewal, Higher Engineering Mathematics, Khanna Publications, 44th edition, 2016.

2. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley India Pvt. Ltd. 8th Edition (Wiley student edition) 2004.

3. Calculus by Thomas Finney, 9th edition, Pearson education, 2002.

Reference Books:

1. R K. Jain and S. R. K. Jain & S. R. K. Iyengar, Numerical methods, New age international pvt. Publishers, 6thedition, 2014.

N.P. Bali and Manish Goyal, A textbook of Engineering Mathematics, Laxmi Publications, Reprint,
 2010

- http://nptel.ac.in/courses.phd?disciplineID=111
- http://www.class-central.com/subject/math(MOOCs)
- http://academicerath.org/

Course Title	Mathematics for Mechanical Engineering -2					
Course Code	23MATM21	Course Type	IPCC			
SEE duration	3 hour	(L-T-P-C)	(2-2-2-4)			
CIE(Theory) marks	30	Hours / Week	06			
CIE(Practical's)/A ctivity marks	20	SEE marks	50			

Course Objective: To train the students to acquire knowledge in differential equations and vector calculus so as to solve basic engineering application problems.

Course Outcomes (COs): At the end of course, student will be able to:

COs	Outcomes	POs	PSOs			
CO1	Apply suitable met connected with c differential equations	hods to solve ordinary diff s and vector o	PO1	-		
CO2	Examine the higher of that are connect differential equations	order problems eted with dif s and solve.	s (more diffic ferential equ	ult problems) ations/partial	PO1, PO2	-
CO3	Examine and problems/application and curl.	calculus , divergence	PO1, PO2	-		
CO4	Model the real-lif problems and hence	e problems/ e solve the sa	Engineering ame.	g application	PO1, PO2	-
CO5	Write the program in connected with cal equations, vector ca correct output.	PO1, PO2	-			
CO-PO	Mapping:		PO1	PO2	7	
		CO1	3	-		
		-				
		4				
		CO5	3	2		
Course Contents:

MODULE –1

Ordinary Differential Equations - first order first degree-Linear differential equations, Exact differential equations and Power series solutions.

Applications: Mathematical modelling through differential equations of first order first degree and solution-modelling of population growth, finding initial velocity of the space vehicle so that it has to escape from earth. Modelling of infected diseases, carbon dating half-life period, mixing problem involving one tank, two tank.

Application of first order differential equation- Autonomous equation and population dynamics-Application- Logistic model- Natural growth of halibut population in certain areas of Pacific Ocean, Harvesting a renewable resource. Motion of a simple pendulum, Deflection of beams.

Self-study--Bernoulli's differential equations, Reducible to exact differential equations - Integrating factors on $\frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) and \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right)$, Orthogonal trajectories in Cartesian form, illustrative examples Applications to find the orthogonal trajectories -streamlines of flow in the channel, curves of constant temperature in a body. Equi-potential lines in an electric field between two concentric cylinders

MODULE –2

13 Hrs.

12 Hrs.

Linear differential equation with constant coefficients - Solutions of homogeneous equations. Particular solution of non- homogenous differential equations by inverse differential operator method for the following standard forms, exponential, polynomial, trigonometric and their product. Method of variation of parameters to solve linear differential equation with constant coefficients. Matrix method to solve homogeneous differential equations of order 2, degree 1.

Applications of second order, first degree Differential equations: - Mechanical Vibrations-A Spring mass system $mu^{II}(t) + ku^{I}(t) + gu(t) = f(t)$ -Undamped free vibrations, damped free vibrations, forced vibrations with damping, forced vibrations without damping.

Self-study—method of undetermined coefficients, LDE with variable coefficients (Cauchy's and Legendre's differential equations). Method of variation of parameters to solve linear differential equation with constant coefficients. Mechanical system and transmission lines.

MODIII	F 3		

13 Hrs.

Numerical solution of first order, first degree ODE: Taylor's series method, Runge-Kutta (RK) method of fourth order, Milne's predictor corrector methods.

Partial Differential Equations. Solving PDE by variable separable method, Solution of nonhomogeneous PDE by direct integration, Numerical solution of a Laplace equation, Poisson equation by finite difference approximation method using standard five point formula, diagonal formula and iterative formulas.

Applications: Applications - To find all possible solutions of one-dimensional heat equation and two-

dimensional wave equation. Finding approximate solutions to solve mechanical engineering problems. Vibration of a rod/membrane.

Self-Study- Homogeneous PDEs involving derivatives with respect to one independent variable only. Solution of Lagrange's linear PDE. To find all possible solutions of two-dimensional Laplace equation. Application connected with Mechanical Engineering.

10DULE – 4	12 hrs.
------------	---------

Vector Calculus: Velocity & acceleration of a vector point function, moment of a force, velocity of a rotating body, rotation of a rigid body, Gradient, divergence & curl. Physical & Geometrical Interpretation of dot product, irrotational vectors, illustrative examples from engineering field.

Nonlinear differential equations: Introduction to general and singular solutions, Solvable for p only, Clairaut's equations, reducible to Clairaut's equations - Finding the solution by the method of undetermined coefficients.

Applications: Modelling projectile motion(vector approach), Formulation and solution of Cantilever beam. Analysis of stream lines and electic potentials.

Self – study: Curvilinear coordinates: Scale factors, base vectors, and transformation between Cartesian and curvilinear systems, orthogonality. Problems

List of Programmes:

- 1. Solution of first order ordinary differential equation using Taylor series & Range-kutta method.
- 2. Solution of partial differential equation (Laplace & Poisson equations)
- **3.** Finding gradient, divergence and curl.
- 4. Computation of area, volume and center of gravity.
- 5. Verification of Green's theorem in vector integration.
- 6. Solution of system of equations by Gauss elimination method.
- 7. Solution of 2nd order differential equations (by variation of parameter method).
- 8. Numerical solution of simultaneous differential equations by Range-kutta method.
- 9. Solution of system of linear equations using Gauss-Seidal iteration method.
- **10.** Product of matrices & finding Inverse of a matrix.

NOTE:

1. Proofs are not required for any theorems and properties.

2. There should not be any questions from self study part in semester End Examination.

Text Books :

1. Dr. B. S. Grewal, Higher Engineering Mathematics, Khanna Publications, 44th edition, 2016.

2. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley India Pvt. Ltd. 8th Edition (Wiley student edition) 2004.

3. Calculus by Thomas Finney, 9th edition, Pearson education, 2002.

Reference Books:

1. R K. Jain and S. R. K. Jain & S. R. K. Iyengar, Numerical methods, New age international pvt. Publishers, 6thedition, 2014.

2. N.P. Bali and Manish Goyal, A textbook of Engineering Mathematics, Laxmi Publications, Reprint, 2010

Web links

- http://nptel.ac.in/courses.phd?disciplineID=111
- http://www.class-central.com/subject/math(MOOCs)
- http://academicerath.org/

<u>Programming in Python</u> Course outcome of Mathematical procedures using Python Programme:

CO5: At the end of the course, students will be able to write the Programme in Python for the Mathematical procedures connected with calculus, numerical methods, differential equations, vector calculus, execute the same and provides correct output.

	PO1	PO2	P05
CO5	3	2	1

MALNAD COLLEGE OF ENGINEERING, HASSAN (An Autonomous Institution Affiliated to VTU, Belgaum)

Autonomous Programmes

Bachelor of Engineering

DEPARTMENT OF MATHEMATICS

SYLLABUS

III & IV Semester (2022 Admitted Batch)

(2nd year)

Academic Year 2023-24

Scheme of evaluation (Theory courses)

Assessment	Marks
Three CIE's	30
Activities	20
SEE	50
Total	100

Examination	Maximum marks	Minimum marks to qualify
CIE	50	20(12+8)
SEE	50	20

Course Title	Mathematics for Computer Science Engineering			
Course Code	22MA301	Course Type	Regular	
SEE duration	3hours	(L-T-P-C)	(2-2-0-3)	
CIE(Theory) marks	30	Hours / Week	04	
CIE (Activity) marks	20	SEE marks	50	

Course Objective:

To introduce linear algebra and transform calculus which can be employed as tools in solving engineering application problems.

Course Outcomes:

At the end of the course students will be able to:

COs	Outcomes	POs	PSOs
CO1	Utilise the concept of consistency of system of equations to solve the engineering application problems and compute the	PO1,PO2	-
	number of linearly independent vectors.		
CO2	Examine for the existence of diagonalization of matrix, find the suitable matrix of transformations so as to get the required image and analyse the system of equations to compute the number of linearly independent Eigen vectors.	PO1,PO2	-
CO3	Apply Laplace transform on simple functions and compute Fourier series of periodic functions.	PO1	-
CO4	Examine for adopting different techniques of integration so as to compute Fourier series, Laplace transform of a given function.	PO1,PO2	-
CO5	Model the real life problems/engineering application problems and solve the same.	PO1,PO2	-

CO-PO Mapping:

	PO1	PO2
CO1	3	2
CO2	3	2
CO3	3	-
CO4	3	2
CO5	3	2

Course Contents

	Laplace Transforms: Introduction, Definition, Importance of		
	Laplace transform in engineering applications, properties, Laplace		
	transform of standard functions, Laplace transform of derivatives,		
	Laplace transform of periodic functions, unit-step functions.		
	Inverse Laplace Transforms: Definition and general properties,		
Module-1	Convolution theorem – illustrative examples, Initial value problems.	10 Hours	
	To solve Applications of initial value problems in engineering using		
	Laplace transform		
	Self-StudyUnit impulse functions (Dirac – delta function).		
	Application of Fourier series to Laplace equation.		
	Fourier Series: Periodic functions and their graphical representation,		
	to find the function for standard graphs, to find Fourier series by		
	change of interval method, To represent the experimental data as a		
	Fourier series using the method - Practical harmonic analysis.		
	application of Fourier series in engineering-To represent the signal	10.11	
Module-2	(wave form) in terms of Fourier series, Fourier series representation	10 Hours	
	for the excitation described by the wave form, graphs of Fourier series		
	approximating the given function.		
	Self-Study Half range series method. Applications of Fourier		
	transforms/ fast Fourier transforms in computer science engineering.		
	Linear Algebra: Importance of Matrices in engineering. Rank of a		
Module-3	matrix. Consistency of nonhomogeneous and homogeneous system of	10 Hours	
	equations, Solution of the system of linear equations by Gauss		

	Applications of system of equations, eigen value, eigen vectors, linear	1
	the dynamical systems using the concept of eigen value, eigen vectors. Applications of system of equations, eigen value, eigen vectors, linear	
	Self-Study Stability analysis of differential equations which governs	
	already given.	
	Diagonalization and powers of 3X3 matrices when Eigen values are	10 Hours
	eigen value.	
	(Spring mass system).Rayleigh power method to find the highest	
	growth of a population model. Kole of eigenvalues, eigenvectors in determining natural frequency mode shapes of equations of motions	
	Applications-Stretching of an elastic membrane, to determine the	
	Illustrative examples,	
Module-4	Linear Algebra: Eigen values and Eigen vectors, properties,	
	dietician.	
	of food stuff so as to get the desired nutrients as prescribed by a	
	Self-Study Traffic flow problem, To find the suitable combination	
	chemical equations.	
	Applications of solution of system of equations to balance the	
	matrix of transformation when the image of some points is given.	
	Special matrices-matrix of rotation, reflection, translation. To find the	
	dependent and independent vectors	

Text Books:

- 1. Dr. B. S. Grewal, Higher Engineering Mathematics, Khanna Publications, 44th edition, 2016.
- 2. Linear algebra by David c lay, 3rd edition, Pearson education, 2002.

Reference Books:

- 1. R K Jain and S R K Iyengar, Advanced engineering mathematics by Narosa publishers, 2nd edition, 2005.
- 2. Calculus by Thomas Finney, 9th edition, Pearson education, 2002.

 Erwin Kreyszig, Advanced Engineering Mathematics, Wiley India Pvt. Ltd. 8th Edition (Wiley student edition) 2004.

Web links

- http://nptel.ac.in/courses.phd?disciplineID=111
- http://www.class-central.com/subject/math(MOOCs)
- http://academicerath.org/

ACTIVITIES:

- 1. To represent sawtooth periodic motion of a follower operated by a Cam which rotates uniformly, in the form of Fourier series.
- 2. Application of Fourier series to Laplace equation, heat conduction.
- 3. Fourier series representation for the excitation described by the wave form,
- 4. Role of eigenvalues, eigenvectors in determining natural frequency, mode shapes of equations of motions (Spring mass system).
- 5. Lenovo input output method application to balance the economy of a Country.
- 6. Applications of factorization of matrices-google recommendation.
- 7. Jordan canonical form when minimal polynomial and characteristic polynomial is given and its application in Engineering.
- 8. Diagonalize a matrix and determining the principal stresses.
- 9. Application of Laplace transformation.
- 10. Application of Eigen value and Eigen vectors in data compression, Signature testing, Face recognition. Google page ranking.
- 11. Least square solution of system of equations- a matrix approach
- 12. Unit impulse functions (Dirac delta function) application.

Course Title	Mathematics for Information Science Engineering			
Course Code	22MA301	Course Type	Regular	
SEE duration	3hours	(L-T-P-C)	(3-2-0-4)	
CIE(Theory) marks	30	Hours / Week	05	
CIE (Activity) marks	20	SEE marks	50	

Course Objective:

To introduce linear algebra and transform calculus which can be employed as tools in solving engineering application problems.

Course Outcomes:

At the end of the course students will be able to:

COs	Outcomes	POs	PSOs
CO1	Utilise the concept of consistency of system of equations to solve the engineering application problems and compute the number of linearly independent vectors.	PO1,PO2	-
CO2	Examine for the existence of diagonalization of matrix, find the suitable matrix of transformations so as to get the required image and analyse the system of equations to compute the number of linearly independent Eigen vectors.	PO1,PO2	-
CO3	Apply Laplace transform on simple functions and compute Fourier series of periodic functions.	PO1	-
CO4	Examine for adopting different techniques of integration so as to compute Fourier series, Fourier transforms, Laplace transform of a given function.	PO1,PO2	-
CO5	Model the real life problems/engineering application problems and solve the same.	PO1,PO2	-

CO-PO Mapping:

	PO1	PO2
CO1	3	2
CO2	3	2
CO3	3	-
CO4	3	2
CO5	3	2

Course Contents

	Laplace Transforms: Introduction, Definition, Importance of		
	Laplace transform in engineering applications, properties, Laplace		
	transform of standard functions, Laplace transform of derivatives,		
	Laplace transform of periodic functions, unit-step functions.		
	Inverse Laplace Transforms: Definition and general properties,		
Module-1	Convolution theorem – illustrative examples, Initial value problems.	13 Hours	
	To solve Applications of initial value problems in engineering using		
	Laplace transform		
	Self-Study Unit impulse functions (Dirac – delta function).		
	Application of Fourier series to Laplace equation, heat conduction.		
	Fourier Series: Periodic functions and their graphical representation		
	Fourier series. I choice functions and their graphical representation,		
	to find the function for standard graphs, to find Fourier series by		
	change of interval method, To represent the experimental data as a		
	Fourier series using the method - Practical harmonic analysis.		
	application of Fourier series in engineering-To represent the signal		
	(wave form) in terms of Fourier series, Fourier series representation		
	for the excitation described by the wave form, graphs of Fourier series		
Module–2	approximating the given function. Fourier sine transform.	13 Hours	
	Curve fitting- Piecewise spline interpolation-linear, quadratic, cubic		
	spline method.		
	Self-Study Half range series method. Applications of Fast Fourier		
	transforms, Discrete Fourier transforms in information science		
	engineering.		

	Linear Algebra: Importance of Matrices in engineering. Rank of a			
	matrix. Consistency of nonhomogeneous and homogeneous system of			
	equations, Solution of the system of linear equations by Gauss			
	elimination method and Gauss – Seidel iterative method. Linearly			
	dependent and independent vectors.			
	Special matrices-matrix of rotation, reflection, translation. To find the			
Module-3	matrix of transformation when the image of some points is given.	12 Hours		
	Applications of solution of system of equations to balance the			
	chemical equations.			
	Self-Study Traffic flow problem, To find the suitable combination			
	of food stuff so as to get the desired nutrients as prescribed by a			
	dietician.			
Module-4	Linear Algebra: Eigen values and Eigen vectors, properties,			
	Illustrative examples,			
	Applications-Stretching of an elastic membrane, to determine the			
	growth of a population model. Role of eigenvalues, eigenvectors in			
	determining natural frequency, mode shapes of equations of motions			
	(Spring mass system).Rayleigh power method to find the highest			
	eigen value.			
	Diagonalization and powers of 3X3 matrices when Eigen values are	12 Hours		
	already given.			
	Self-Study Stability analysis of differential equations which governs			
	the dynamical systems using the concept of eigen value, eigen vectors.			
	Applications of system of equations, linear transformation in			
	computer science. Application of eigen value eigen vectors in data			
	compression, Signature testing, Face recognition. Google page			
	ranking.			
Note – 1. Theo	rems and properties without proof. Applicable to all the Modules.	1		
2. Self stu	2. Self study part is not included for Semester End Examination.			

Text Books:

1. Dr. B. S. Grewal, Higher Engineering Mathematics, Khanna Publications, 44th edition, 2016.

2. Linear algebra by David c lay, 3rd edition, Pearson education, 2002.

Reference Books:

- 1. R K Jain and S R K Iyengar, Advanced engineering mathematics by Narosa publishers, 2ndedition, 2005.
- 2. Calculus by Thomas Finney, 9th edition, Pearson education, 2002.
- 3. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley India Pvt. Ltd. 8th Edition (Wiley student edition) 2004.

Web links

- http://nptel.ac.in/courses.phd?disciplineID=111
- http://www.class-central.com/subject/math(MOOCs)
- http://academicerath.org/

ACTIVITIES:

- a. To represent sawtooth periodic motion of a follower operated by a Cam which rotates uniformly, in the form of Fourier series.
- b. Application of Fourier series to Laplace equation, heat conduction.
- c. Fourier series representation for the excitation described by the wave form,
- d. Role of eigenvalues, eigenvectors in determining natural frequency, mode shapes of equations of motions (Spring mass system).
- e. Lenovo input output method application to balance the economy of a Country.
- f. Applications of factorization of matrices-google recommendation.
- g. Jordan canonical form when minimal polynomial and characteristic polynomial is given and its application in Engineering.
- h. Diagonalize a matrix and determining the principal stresses.
- i. Application of Laplace transformation.
- j. Application of Eigen value, Eigen vectors in data compression, Signature testing, Face recognition. Google page ranking.
- k. Least square solution of system of equations- a matrix approach
- I. Unit impulse functions (Dirac delta function)- application.

Course Title	Mathematics for Electronics and Communication Engineering		
Course Code	22MA301	Course Type	Regular
SEE duration	3hours	(L-T-P-C)	(3-2-0-4)
CIE(Theory) marks	30	Hours / Week	05
CIE (Activity) marks	20	SEE marks	50

Course Objective:

To introduce linear algebra and transform calculus which can be employed as tools in solving engineering application problems.

Course Outcomes:

At the end of the course students will be able to:

COs	Outcomes	POs	PSOs
CO1	Utilise the concept of consistency of system of equations to solve the engineering application problems and compute the number of linearly independent vectors.	PO1,PO2	-
CO2	Examine for the existence of diagonalization of matrix, find the suitable matrix of transformations so as to get the required image and analyse the system of equations to compute the number of linearly independent Eigen vectors.	PO1,PO2	-
CO3	Apply Laplace transform on simple functions and compute Fourier series of periodic functions.	PO1	-
CO4	Examine for adopting different techniques of integration so as to compute Fourier series, Fourier transforms, Laplace transform of a given function.	PO1,PO2	-
CO5	Model the real life problems/engineering application problems and solve the same.	PO1,PO2	-

CO-PO Mapping:

	PO1	PO2
CO1	3	2
CO2	3	2
CO3	3	-
CO4	3	2
CO5	3	2

Course Contents

Laplace Transforms: Introduction, Definition, Importance	of
Laplace transform in engineering applications, properties, Lapla	.ce
transform of standard functions, Laplace transform of derivativ	es,
Laplace transform of periodic functions, unit-step functions.	
Inverse Laplace Transforms: Definition and general properti	es,
Convolution theorem – illustrative examples, Initial value problem	ns.
Module-1 To solve Applications of initial value problems in engineering usi	ng 13 Hours
Laplace transform	
Self-StudyUnit impulse functions (Dirac – delta functio	n).
Application of Fourier series to Laplace equation, heat conduction	on.
Curve fitting- Piecewise spline interpolation-linear, quadratic, cul	vic
spline method. Double interpolation.	
Fourier Series: Periodic functions and their graphical representation	on,
to find the function for standard graphs, to find Fourier series	by
change of interval method, To represent the experimental data as	s a
Fourier series using the method - Practical harmonic analys	is.
application of Fourier series in engineering-To represent the sign	nal
(wave form) in terms of Fourier series, Fourier series representation	on
Module–2 for the excitation described by the wave form, graphs of Fourier ser	ies 13 Hours
approximating the given function. Half range series method. Four	ier
transforms, Fourier sine transform and cosine transform.	
Self Study Applications of Fourier series, Fast Fourier transform	ns,
Discrete Fourier transforms in electronics engineering.	

	Linear Algebra: Importance of Matrices in engineering. Rank of a		
	matrix. Consistency of nonhomogeneous and homogeneous system of		
	equations, Solution of the system of linear equations by Gauss		
	elimination method and Gauss – Seidel iterative method. Linearly		
	dependent and independent vectors.		
	Special matrices-matrix of rotation, reflection, translation. To find the		
Module–3	matrix of transformation when the image of some points is given.	12 Hours	
	Applications of solution of system of equations to balance the		
	chemical equations.		
	Self-Study Traffic flow problem, To find the suitable combination		
	of food stuff so as to get the desired nutrients as prescribed by a		
	dietician.		
Module-4	Linear Algebra: Eigen values and Eigen vectors, properties,		
	Illustrative examples,		
	Applications-Stretching of an elastic membrane, to determine the		
	growth of a population model. Role of eigenvalues, eigenvectors in		
	determining natural frequency, mode shapes of equations of motions		
	(Spring mass system). Rayleigh power method to find the highest		
	eigen value.	12 Hours	
	Diagonalization and powers of 3X3 matrices when Eigen values are		
	already given.		
	Self-Study Stability analysis of differential equations which		
	governs the dynamical systems using the concept of eigen value, eigen		
	vectors. Application of eigen value eigen vectors in electronics		
	engineering. Applications of Jordan canonical forms.		
Note – 1. Theo	rems and properties without proof. Applicable to all the Modules.		
2. Self study pa	art is not included for Semester End Examination.		
Text Books:			
1. Dr. B. S. Grewal, Higher Engineering Mathematics, Khanna Publications, 44 th edition, 2016.			
2. Linear alg	ebra by David c lay, 3rd edition, Pearson education, 2002.		
Reference Books	:		
1. R K Jain ar	nd S R K Iyengar, Advanced engineering mathematics by Narosa publishers, 2^n	^d edition, 2005.	
2. Calculus b	by Thomas Finney, 9 th edition, Pearson education, 2002.		

3. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley India Pvt. Ltd. 8th Edition (Wiley student edition) 2004.

Web links

- <u>http://nptel.ac.in/courses.phd?disciplineID=111</u>
- http://www.class-central.com/subject/math(MOOCs)
- http://academicerath.org/

ACTIVITIES:

- a. To represent sawtooth periodic motion of a follower operated by a Cam which rotates uniformly, in the form of Fourier series.
- b. Application of Fourier series to Laplace equation, heat conduction.
- c. Fourier series representation for the excitation described by the wave form,
- d. Role of eigenvalues, eigenvectors in determining natural frequency, mode shapes of equations of motions (spring mass system).
- e. Lenovo input output method application to balance the economy of a Country.
- f. Applications of factorization of matrices-google recommendation.
- g. Jordan canonical form when minimal polynomial and characteristic polynomial is given and its application in Engineering.
- h. Diagonalize a matrix and determining the principal stresses.
- i. Application of Laplace transformation.
- j. Application of Eigen value Eigen vectors in data compression, Signature testing, Face recognition. Google page ranking.
- k. Least square solution of system of equations- a matrix approach
- I. Unit impulse functions (Dirac delta function) application.

Course Title	Mathematics for Electrical and Electronics Engineering		
Course Code	22MA301	Course Type	Regular
SEE duration	3hours	(L-T-P-C)	(2-2-0-3)
CIE(Theory) marks	30	Hours / Week	04
CIE (Activity) marks	20	SEE marks	50

Course Objective:

To introduce linear algebra and transform calculus which can be employed as tools in solving engineering application problems.

_

Course Outcomes:

Г

At the end of the course students will be able to:

COs	Outcomes	POs	PSOs
CO1	Utilise the concept of consistency of system of equations to solve the engineering application problems and compute the number of	PO1,PO2	-
CO2	Inearly independent vectors. Examine for the existence of diagonalization of matrix, find the suitable matrix of transformations so as to get the required image and analyse the system of equations to compute the number of linearly independent Figure vectors.	PO1,PO2	-
CO3	Apply Laplace transform on simple functions and compute Fourier series of periodic functions.	PO1	-
CO4	Examine for adopting different techniques of integration so as to compute Fourier series, Laplace transform of a given function.	PO1,PO2	-
CO5	Model the real life problems/engineering application problems and solve the same.	PO1,PO2	-

CO-PO Mapping:

	PO1	PO2
CO1	3	2
CO2	3	2
CO3	3	-
CO4	3	2
CO5	3	2

Course Contents

Module-1Laplace transform in engineering applications, properties, Laplace transform of standard functions, Laplace transform of derivatives, Laplace transform of periodic functions, unit-step functions. Inverse Laplace Transforms: Definition and general properties, Convolution theorem – illustrative examples, Initial value problems. To solve Applications problems- initial value problems connected with Electrical circuit using Laplace transform. To solve the coupled differential equations connected with electrical circuit. Self-StudyUnit impulse functions (Dirac – delta function). Applications of Fourier series to Laplace equation, heat conduction. Applications of Fourier transforms.10 HoursModule-2Fourier Series: Periodic functions and their graphical representation, to find the function for standard graphs, to find Fourier series by change of interval method. To represent the experimental data as a Fourier series using the method - Practical harmonic analysis. application of Fourier series in EE engineering-To represent the signal (wave form) in terms of Fourier series, Fourier series representation for the excitation described by the wave form, graphs of Fourier series approximating the given function. Self-Study Half range series method.10 HoursModule-3Linear Algebra: Importance of Matrices in engineering. Rank of a matrix. Consistency of nonhomogeneous and homogeneous system of equations, Solution of the system of linear equations by Gauss10 Hours		Laplace Transforms: Introduction, Definition, Importance of	
Module-1transform of standard functions, Laplace transform of derivatives, Laplace transform of periodic functions, unit-step functions.Inverse Laplace Transforms: Definition and general properties, Convolution theorem – illustrative examples, Initial value problems. To solve Applications problems- initial value problems connected with Electrical circuit using Laplace transform. To solve the coupled differential equations connected with electrical circuit. Self-StudyUnit impulse functions (Dirac – delta function). Application of Fourier series to Laplace equation, heat conduction. Applications of Fourier transforms.Inverse Series: Periodic functions and their graphical representation, to find the function for standard graphs, to find Fourier series by change of interval method. To represent the experimental data as a Fourier series using the method - Practical harmonic analysis. application of Fourier series in EE engineering-To represent the signal (wave form) in terms of Fourier series, Fourier series representation for the excitation described by the wave form, graphs of Fourier series approximating the given function. Self-Study Half range series method.10 HoursModule-3Module-3Linear Algebra: Importance of Matrices in engineering. Rank of a matrix. Consistency of nonhomogeneous and homogeneous system of equations, Solution of the system of linear equations by Gauss10 Hours		Laplace transform in engineering applications, properties, Laplace	
Module-1Laplace transform of periodic functions, unit-step functions. Inverse Laplace Transforms: Definition and general properties, Convolution theorem – illustrative examples, Initial value problems. To solve Applications problems- initial value problems connected with Electrical circuit using Laplace transform. To solve the coupled differential equations connected with electrical circuit. Self-StudyUnit impulse functions (Dirac – delta function). Application of Fourier series to Laplace equation, heat conduction. Applications of Fourier transforms.10 HoursModule-2Fourier Series: Periodic functions and their graphical representation, to find the function for standard graphs, to find Fourier series by change of interval method, To represent the experimental data as a Fourier series using the method - Practical harmonic analysis. application of Fourier series in EE engineering-To represent the signal (wave form) in terms of Fourier series, Fourier series representation for the excitation described by the wave form, graphs of Fourier series approximating the given function. Self-Study Half range series method.10 HoursModule-3Linear Algebra: Importance of Matrices in engineering. Rank of a matrix. Consistency of nonhomogeneous and homogeneous system of equations, Solution of the system of linear equations by Gauss10 Hours		transform of standard functions, Laplace transform of derivatives,	
Module-1Inverse Laplace Transforms: Definition and general properties, Convolution theorem – illustrative examples, Initial value problems. To solve Applications problems- initial value problems connected with Electrical circuit using Laplace transform. To solve the coupled differential equations connected with electrical circuit. Self-StudyUnit impulse functions (Dirac – delta function). Application of Fourier series to Laplace equation, heat conduction. Applications of Fourier transforms.10 HoursModule-2Fourier Series: Periodic functions and their graphical representation, to find the function for standard graphs, to find Fourier series by change of interval method, To represent the experimental data as a Fourier series using the method - Practical harmonic analysis. application of Fourier series in EE engineering-To represent the signal (wave form) in terms of Fourier series, Fourier series representation for the excitation described by the wave form, graphs of Fourier series approximating the given function. Self-Study Half range series method.10 HoursModule-3Linear Algebra: Importance of Matrices in engineering. Rank of a matrix. Consistency of nonhomogeneous and homogeneous system of equations, Solution of the system of linear equations by Gauss10 Hours		Laplace transform of periodic functions, unit-step functions.	
Module-1Convolution theorem - illustrative examples, Initial value problems. To solve Applications problems- initial value problems connected with Electrical circuit using Laplace transform. To solve the coupled differential equations connected with electrical circuit.10 HoursSelf-StudyUnit impulse functions (Dirac – delta function). Application of Fourier series to Laplace equation, heat conduction. Applications of Fourier transforms.10 HoursModule-2Fourier Series: Periodic functions and their graphical representation, to find the function for standard graphs, to find Fourier series by change of interval method, To represent the experimental data as a Fourier series using the method - Practical harmonic analysis. application of Fourier series in EE engineering-To represent the signal (wave form) in terms of Fourier series, Fourier series representation for the excitation described by the wave form, graphs of Fourier series approximating the given function. Self-Study Half range series method.10 HoursModule-3Linear Algebra: Importance of Matrices in engineering. Rank of a matrix. Consistency of nonhomogeneous and homogeneous system of equations, Solution of the system of linear equations by Gauss10 Hours		Inverse Laplace Transforms: Definition and general properties,	
Module-1To solve Applications problems- initial value problems connected with Electrical circuit using Laplace transform. To solve the coupled differential equations connected with electrical circuit. Self-StudyUnit impulse functions (Dirac – delta function). Application of Fourier series to Laplace equation, heat conduction. Applications of Fourier transforms.10 HoursModule-2Fourier Series: Periodic functions and their graphical representation, to find the function for standard graphs, to find Fourier series by change of interval method, To represent the experimental data as a Fourier series using the method - Practical harmonic analysis. application of Fourier series in EE engineering-To represent the signal (wave form) in terms of Fourier series, Fourier series representation for the excitation described by the wave form, graphs of Fourier series approximating the given function. Self-Study Half range series method.10 HoursModule-3Linear Algebra: Importance of Matrices in engineering. Rank of a matrix. Consistency of nonhomogeneous and homogeneous system of equations, Solution of the system of linear equations by Gauss10 Hours		Convolution theorem – illustrative examples, Initial value problems.	
with Electrical circuit using Laplace transform. To solve the coupled differential equations connected with electrical circuit.Self-StudyUnit impulse functions (Dirac – delta function). Application of Fourier series to Laplace equation, heat conduction. Applications of Fourier transforms.Fourier Series: Periodic functions and their graphical representation, to find the function for standard graphs, to find Fourier series by change of interval method, To represent the experimental data as a Fourier series using the method - Practical harmonic analysis. application of Fourier series in EE engineering-To represent the signal (wave form) in terms of Fourier series, Fourier series representation for the excitation described by the wave form, graphs of Fourier series approximating the given function. Self-Study Half range series method.10 HoursModule-3Linear Algebra: Importance of Matrices in engineering. Rank of a matrix. Consistency of nonhomogeneous and homogeneous system of equations, Solution of the system of linear equations by Gauss10 Hours	Module-1	To solve Applications problems- initial value problems connected	10 Hours
Coupled differential equations connected with electrical circuit.Self-StudyUnit impulse functions (Dirac – delta function). Application of Fourier series to Laplace equation, heat conduction. Applications of Fourier transforms.Fourier Series: Periodic functions and their graphical representation, to find the function for standard graphs, to find Fourier series by change of interval method, To represent the experimental data as a Fourier series using the method - Practical harmonic analysis. application of Fourier series in EE engineering-To represent the signal (wave form) in terms of Fourier series, Fourier series representation for the excitation described by the wave form, graphs of Fourier series approximating the given function. Self-Study Half range series method.10 HoursModule-3Linear Algebra: Importance of Matrices in engineering. Rank of a matrix. Consistency of nonhomogeneous and homogeneous system of equations, Solution of the system of linear equations by Gauss10 Hours		with Electrical circuit using Laplace transform. To solve the	
Self-StudyUnit impulse functions (Dirac – delta function). Application of Fourier series to Laplace equation, heat conduction. Applications of Fourier transforms.Fourier Series: Periodic functions and their graphical representation, to find the function for standard graphs, to find Fourier series by change of interval method, To represent the experimental data as a Fourier series using the method - Practical harmonic analysis. application of Fourier series in EE engineering-To represent the signal (wave form) in terms of Fourier series, Fourier series representation for the excitation described by the wave form, graphs of Fourier series approximating the given function.10 HoursModule-3Linear Algebra: Importance of Matrices in engineering. Rank of a matrix. Consistency of nonhomogeneous and homogeneous system of equations, Solution of the system of linear equations by Gauss10 Hours		coupled differential equations connected with electrical circuit.	
Application of Fourier series to Laplace equation, heat conduction. Applications of Fourier transforms.Fourier Series: Periodic functions and their graphical representation, to find the function for standard graphs, to find Fourier series by change of interval method, To represent the experimental data as a Fourier series using the method - Practical harmonic analysis. application of Fourier series in EE engineering-To represent the signal (wave form) in terms of Fourier series, Fourier series representation for the excitation described by the wave form, graphs of Fourier series approximating the given function.10 HoursModule-3Linear Algebra: Importance of Matrices in engineering. Rank of a matrix. Consistency of nonhomogeneous and homogeneous system of equations, Solution of the system of linear equations by Gauss10 Hours		Self-StudyUnit impulse functions (Dirac – delta function).	
Applications of Fourier transforms.Fourier Series: Periodic functions and their graphical representation, to find the function for standard graphs, to find Fourier series by change of interval method, To represent the experimental data as a Fourier series using the method - Practical harmonic analysis. application of Fourier series in EE engineering-To represent the signal (wave form) in terms of Fourier series, Fourier series representation for the excitation described by the wave form, graphs of Fourier series approximating the given function.10 HoursSelf-Study Half range series method.Linear Algebra: Importance of Matrices in engineering. Rank of a matrix. Consistency of nonhomogeneous and homogeneous system of equations, Solution of the system of linear equations by Gauss10 Hours		Application of Fourier series to Laplace equation, heat conduction.	
Module-3Fourier Series: Periodic functions and their graphical representation, to find the function for standard graphs, to find Fourier series by change of interval method, To represent the experimental data as a Fourier series using the method - Practical harmonic analysis. application of Fourier series in EE engineering-To represent the signal (wave form) in terms of Fourier series, Fourier series representation for the excitation described by the wave form, graphs of Fourier series approximating the given function. Self-Study Half range series method.10 HoursModule-3Linear Algebra: Importance of Matrices in engineering. Rank of a matrix. Consistency of nonhomogeneous and homogeneous system of equations, Solution of the system of linear equations by Gauss10 Hours		Applications of Fourier transforms.	
Module-2to find the function for standard graphs, to find Fourier series by change of interval method, To represent the experimental data as a Fourier series using the method - Practical harmonic analysis. application of Fourier series in EE engineering-To represent the signal (wave form) in terms of Fourier series, Fourier series representation for the excitation described by the wave form, graphs of Fourier series approximating the given function.10 HoursModule-3Linear Algebra: Importance of Matrices in engineering. Rank of a matrix. Consistency of nonhomogeneous and homogeneous system of equations, Solution of the system of linear equations by Gauss10 Hours		Fourier Series: Periodic functions and their graphical representation,	
Module-2change of interval method, To represent the experimental data as a Fourier series using the method - Practical harmonic analysis. application of Fourier series in EE engineering-To represent the signal (wave form) in terms of Fourier series, Fourier series representation for the excitation described by the wave form, graphs of Fourier series approximating the given function. Self-Study Half range series method.10 HoursModule-3Linear Algebra: Importance of Matrices in engineering. Rank of a matrix. Consistency of nonhomogeneous and homogeneous system of equations, Solution of the system of linear equations by Gauss10 Hours		to find the function for standard graphs, to find Fourier series by	
Module-2Fourier series using the method - Practical harmonic analysis. application of Fourier series in EE engineering-To represent the signal (wave form) in terms of Fourier series, Fourier series representation for the excitation described by the wave form, graphs of Fourier series approximating the given function. Self-Study Half range series method.10 HoursModule-3Linear Algebra: Importance of Matrices in engineering. Rank of a matrix. Consistency of nonhomogeneous and homogeneous system of equations, Solution of the system of linear equations by Gauss10 Hours		change of interval method, To represent the experimental data as a	
Module-2application of Fourier series in EE engineering-To represent the signal (wave form) in terms of Fourier series, Fourier series representation for the excitation described by the wave form, graphs of Fourier series approximating the given function.10 HoursSelf-Study Half range series method.10 HoursModule-3Linear Algebra: Importance of Matrices in engineering. Rank of a equations, Solution of the system of linear equations by Gauss10 Hours		Fourier series using the method - Practical harmonic analysis.	
Signal (wave form) in terms of Fourier series, Fourier series representation for the excitation described by the wave form, graphs of Fourier series approximating the given function. Self-Study Half range series method.Self-Study Image series Image series in engineering. Rank of a matrix. Consistency of nonhomogeneous and homogeneous system of equations, Solution of the system of linear equations by GaussImage series Image series Image series	Module-2	application of Fourier series in EE engineering-To represent the	10 Hours
Module-3Linear Algebra: Importance of Matrices in engineering. Rank of a matrix. Consistency of nonhomogeneous and homogeneous system of equations, Solution of the system of linear equations by Gauss10 Hours		signal (wave form) in terms of Fourier series, Fourier series	
of Fourier series approximating the given function.Self-Study Half range series method.Linear Algebra: Importance of Matrices in engineering. Rank of a matrix. Consistency of nonhomogeneous and homogeneous system of equations, Solution of the system of linear equations by Gauss		representation for the excitation described by the wave form, graphs	
Self-Study Half range series method. Linear Algebra: Importance of Matrices in engineering. Rank of a matrix. Consistency of nonhomogeneous and homogeneous system of equations, Solution of the system of linear equations by Gauss		of Fourier series approximating the given function.	
Module-3Linear Algebra: Importance of Matrices in engineering. Rank of a matrix. Consistency of nonhomogeneous and homogeneous system of equations, Solution of the system of linear equations by Gauss10 Hours		Self-Study Half range series method.	
Module-3matrix. Consistency of nonhomogeneous and homogeneous system of equations, Solution of the system of linear equations by Gauss10 Hours		Linear Algebra: Importance of Matrices in engineering. Rank of a	
equations, Solution of the system of linear equations by Gauss	Module-3	matrix. Consistency of nonhomogeneous and homogeneous system of	10 Hours
		equations, Solution of the system of linear equations by Gauss	

	elimination method and Gauss - Seidel iterative method. Linearly	
	dependent and independent vectors.	
	Special matrices-matrix of rotation, reflection, translation. To find the	
	matrix of transformation when the image of some points is given.	
	Applications of solution of system of equations to balance the	
	chemical equations.	
	Self-Study Traffic flow problem, To find the suitable combination	
	of food stuff so as to get the desired nutrients as prescribed by a	
	dietician.	
Module-4	Linear Algebra: Eigen values and Eigen vectors, properties,	
	Illustrative examples,	
	Applications-Stretching of an elastic membrane, to determine the	
	growth of a population model. Role of eigenvalues, eigenvectors in	
	determining natural frequency, mode shapes of equations of motions	
	(Spring mass system).Rayleigh power method to find the highest	
	eigen value.	10 Hours
	Diagonalization and powers of 3X3 matrices when Eigen values are	
	already given.	
	Self-Study Stability analysis of differential equations which	
	governs the dynamical systems using the concept of eigen value, eigen	
	vectors. Applications of Jordan canonical forms, diagonalization of	
	a matrix, matrix factorization and applications in EE.	
Note – 1. Theor	rems and properties without proof. Applicable to all the Modules.	

2. Self study part is not included for Semester End Examination.

Text Books:

- 1. Dr. B. S. Grewal, Higher Engineering Mathematics, Khanna Publications, 44th edition, 2016.
- 2. Linear algebra by David c lay, 3rd edition, Pearson education, 2002.

Reference Books:

- 1. R K Jain and S R K Iyengar, Advanced engineering mathematics by Narosa publishers, 2nd edition, 2005.
- 2. Calculus by Thomas Finney, 9th edition, Pearson education, 2002.
- 3. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley India Pvt. Ltd. 8th Edition (Wiley student edition) 2004.

Web links

- http://nptel.ac.in/courses.phd?disciplineID=111
- http://www.class-central.com/subject/math(MOOCs)
- http://academicerath.org/

ACTIVITIES:

- a. To represent sawtooth periodic motion of a follower operated by a Cam which rotates uniformly, in the form of Fourier series.
- b. Application of Fourier series to Laplace equation, heat conduction.
- c. Fourier series representation for the excitation described by the wave form,
- d. Role of eigenvalues, eigenvectors in determining natural frequency, mode shapes of equations of motions (spring mass system).
- e. Lenovo input output method application to balance the economy of a Country.
- f. Applications of factorization of matrices-google recommendation.
- g. Jordan canonical form when minimal polynomial and characteristic polynomial is given and its application in Engineering.
- h. Diagonalize a matrix and determining the principal stresses.
- i. Application of Laplace transformation.
- j. Application of Eigen value Eigen vectors in data compression, Signature testing, Face recognition. Google page ranking.
- k. Least square solution of system of equations- a matrix approach
- I. Unit impulse functions (Dirac delta function) application.

Course Title	Mathematics for]	Mathematics for Mechanical Engineering	
Course Code	22MA301	Course Type	Regular
SEE duration	3hours	(L-T-P-C)	(2-2-0-3)
CIE(Theory) marks	30	Hours / Week	04
CIE (Activity) marks	20	SEE marks	50

Course Objective:

To introduce linear algebra and transform calculus which can be employed as tools in solving engineering application problems.

Course Outcomes:

At the end of the course students will be able to:

COs	Outcomes	POs	PSOs
CO1	Utilise the concept of consistency of system of equations to solve the engineering application problems and compute the number of linearly independent vectors.	PO1,PO2	-
CO2	Examine for the existence of diagonalization of matrix, find the suitable matrix of transformations so as to get the required image and analyse the system of equations to compute the number of linearly independent Eigen vectors.	PO1,PO2	-
CO3	Apply Laplace transform on simple functions and compute Fourier series of periodic functions.	PO1	-
CO4	Examine for adopting different techniques of integration so as to compute Fourier series, Laplace transform of a given function.	PO1,PO2	-
CO5	Model the real life problems/engineering application problems and solve the same.	PO1,PO2	-

CO-PO Mapping:

	PO1	PO2
CO1	3	2
CO2	3	2
CO3	3	-
CO4	3	2
CO5	3	2

Course Contents

	Laplace Transforms: Introduction, Definition, Importance of		
	Laplace transform in engineering applications, properties, Laplace		
	transform of standard functions, Laplace transform of derivatives,		
	Laplace transform of periodic functions, unit-step functions.		
	Inverse Laplace Transforms: Definition and general properties,		
Module-1	Convolution theorem – illustrative examples, Initial value problems.	10 Hours	
	To solve Applications of initial value problems in engineering using		
	Laplace transform		
	Self-StudyUnit impulse functions (Dirac – delta		
	function). Application of Fourier series to Laplace equation, heat		
	conduction.		
	Fourier Series: Periodic functions and their graphical representation,		
	to find the function for standard graphs. (saw tooth wave, triangular		
	wave, sine wave etc)To find Fourier series by change of interval		
	method, To represent the experimental data as a Fourier series using		
	the method - Practical harmonic analysis. Application of Fourier		
Module-2	series in mechanical engineering-engineering-To represent the	10 Hours	
	signal (wave form) in terms of Fourier series, Fourier series		
	representation for the excitation described by the wave form, graphs		
	of Fourier series approximating the given function.		
	Self-Study Half range series method. Finite difference methods—		
	Ritz method—solution of linear differential equations.		
	Linear Algebra: Importance of Matrices in engineering. Rank of a		
Module-3	matrix. Consistency of nonhomogeneous and homogeneous system of	10 Hours	
	equations, Solution of the system of linear equations by Gauss		

	elimination method and Gauss - Seidel iterative method. Linearly	
	dependent and independent vectors.	
	Special matrices-matrix of rotation, reflection, translation. To find the	
	matrix of transformation when the image of some points is given.	
	Applications of solution of system of equations to balance the	
	chemical equations.	
	Self-Study Traffic flow problem, To find the suitable combination	
	of food stuff so as to get the desired nutrients as prescribed by a	
	dietician.	
Module-4	Linear Algebra: Eigen values and Eigen vectors, properties,	
	Illustrative examples,	
	Applications-Stretching of an elastic membrane, to determine the	
	growth of a population model. Role of eigenvalues, eigenvectors in	
	determining natural frequency, mode shapes of equations of motions	
	(Spring mass system). Rayleigh power method to find the highest	
	eigen value.	10 Hours
	Diagonalization and powers of 3X3 matrices when Eigen values are	
	already given.	
	Self-Study Stability analysis of differential equations which	
	governs the dynamical systems using the concept of eigen value, eigen	
	vectors. Application -to find the principal stresses.	
Note –1. Theor	ems and properties without proof. Applicable to all the Modules.	

2. Self study part is not included for Semester End Examination.

Text Books:

- 1. Dr. B. S. Grewal, Higher Engineering Mathematics, Khanna Publications, 44th edition, 2016.
- 2. Linear algebra by David c lay, 3rd edition, Pearson education, 2002.

Reference Books:

- R K Jain and S R K Iyengar, Advanced engineering mathematics by Narosa publishers, 2nd edition, 2005.
- 2. Calculus by Thomas Finney, 9th edition, Pearson education, 2002.
- 3. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley India Pvt. Ltd. 8th Edition (Wiley student edition) 2004.

Web links

- http://nptel.ac.in/courses.phd?disciplineID=111
- http://www.class-central.com/subject/math(MOOCs)
- http://academicerath.org/

ACTIVITIES:

- a. To represent sawtooth periodic motion of a follower operated by a Cam which rotates uniformly, in the form of Fourier series.
- b. Application of Fourier series to Laplace equation, heat conduction.
- c. Fourier series representation for the excitation described by the wave form,
- d. Role of eigenvalues, eigenvectors in determining natural frequency, mode shapes of equations of motions (spring mass system).
- e. Lenovo input output method application to balance the economy of a Country.
- f. Applications of factorization of matrices-google recommendation.
- g. Jordan canonical form when minimal polynomial and characteristic polynomial is given and its application in Engineering.
- h. Diagonalize a matrix and determining the principal stresses.
- i. Application of Laplace transformation.
- Application of Eigen value Eigen vectors in data compression, Signature testing,
 Face recognition. Google page ranking.
- k. Least square solution of system of equations- a matrix approach
- I. Unit impulse functions (Dirac delta function) application.

Course Title	Discrete Mathematical Structures Information Science & Engineering		
Course Code	22MA302	Course Type	Regular
SEE duration	3hours	(L-T-P-C)	(2-2-0-3)
CIE(Theory) marks	30	Hours / Week	04
CIE (Activity) marks	20	SEE marks	50

Course Objective:

1. To introduce Discrete structures and principle of Combinatorics which can be employed as

tools in the applications of Computer Science & Information Technology.

COs	Outcomes	POs	PSOs
CO1	Apply logic and counting principles to model and analyse problems of Information science & engineering	PO1,PO2	-
CO2	Apply the concepts of logic to identify methods of mathematical proofs.	PO1,PO2	-
CO3	Use concepts of functions in analysing problems on algorithms and programs.	PO1,PO2	-
CO4	Model and analyse programming problems related to Graph theory and coding theory.	PO1,PO2	-
CO5	Derive mathematical model for real life problems related to Information science and Engineering.	PO1,PO2	-

Course Outcomes: Having studied this course, students will be able to

CO-PO Mapping:

	PO1	PO2
CO1	3	2
CO2	3	2
CO3	3	2
CO4	3	2
CO5	3	2

Course Content:

Modules	Contents	No. of hours	
	Principles of Counting: The rule of sum and product, permutation		
	principle, combination principle, rule of generalized Permutations and		
	Combinations, counting technique in chess board.		
Module 1	Fundamentals of Logic: Basic logic connectives and truth tables.	10 Hours	
	Logical equivalence and Tautologies. Statement of laws of logic.		
	Self-study: Set theory - set operations, Venn diagram, Inclusion		
	Exclusion principle.		
	Fundamentals of Logic contd.: Logic implication - Rules of inference		
	theory. Application of switching network.		
	Functions: Ceiling function, Floor function, Characteristic function, and		
Module 2	Application of Stirling numbers of second kind. Application of functions	$\left \begin{array}{c} 10 \text{ Hours} \\ \end{array} \right $	
	in vending machine		
	Self-study: Quantifiers, Relations, Partially ordered sets, Hasse diagram.		
	Graph theory: Definitions and examples, sub graphs, Trees: Definitions,		
	properties and examples, Rooted trees, Sorting, Weighted trees, and		
Module 3	Prefix codes.	10.11	
	Optimization and Matching: Dijkstra's shortest path algorithm.		
	Minimal spanning tree: the Algorithm of Kruskal and prim.		
	Self-study: Euler- graphs, Hamiltonian graphs Graph colouring,		

Module 4	 Coding theory: Elements of coding theory, the humming matric, the parity – check and Generator matrices. Group codes: Decoding with coset leaders. Hamming matrices. Self-study: sub-groups, cosets, Matrix row operations 	10 Hours
----------	--	----------

Note –1. Theorems and properties without proof. Applicable to all the modules.

2. Self study part is not included for Semester End Examination.

Textbooks:

Discrete and Combinatorial Mathematics, R C Grimaldi, Pearson's publications, 5th edition, 2007.

Reference Books:

Discrete Mathematical Structures, by D. S. Malik & M. K. Sen, Thomson's Publications, First edition, 2006.

Web links

- http://nptel.ac.in/courses.phd?disciplineID=111
- http://www.class-central.com/subject/math(MOOCs)
- http://academicerath.org/

Activities List

- 1. Application of switching network
- 2. Application to algorithm testing using computational complexity.
- 3. Application of graph theory to study ecosystem
- 4. Application of graph theory in sociology and psychology
- 5. Computation of number of different ways n rooks can be arranged on an n x n chess board so that no two rooks can attack each other for all positive integers n.
- 6. Discuss ways in which the current telephone numbering plan can be extended to accommodate the rapid demand for more telephone numbers.
- 7. Application of functions in vending machine.

- 8. Graph Theory: Basic terminologies of a graph. Discussion of connected and disconnected graphs, Euler and Hamilton graphs, planar graphs, discuss ways in which the current telephone numbering plan can be extended to accommodate the rapid demand for more telephone numbers.
- 9. **Trees:** Definition, properties of a tree. Weighed trees, prefix codes. Modelling of real-life problems using graphical approach and their analysis.

Course Title	Statistics and Probability for Computer Science		
Course Code	22MA401	Course Type	Regular
SEE duration	3hours	(L-T-P-C)	(2-2-0-3)
CIE(Theory) marks	30	Hours / Week	04
CIE (Activity) marks	20	SEE marks	50

Course Objective: To introduce the concept of probability distribution functions, hypothesis testing, so as to apply in engineering application problems.

Course Outcomes: At the end of the course students will be able to

COs	Outcomes	POs	PSOs
CO1	Analyze the experimental data using correlation, regression, and solve simple problems on probability and joint probability.	PO1	-
CO2	Validate an assumption through "hypothesis testing" (that is the assumption is not simply because of chance).	PO1,PO2	-
CO3	Analyze the problems connected with probability to apply suitable probability distribution and also, predict the probability in the long run for Markov chain based problems.	PO1,PO2	-
CO4	Model real life problems/engineering application problems and solve the same.	PO1,PO2	-

CO-PO Mapping:

	PO1	PO2
CO1	3	-
CO2	3	2
CO3	3	2
CO4	3	2

Course Contents:

	Statistics: Correlation, Karl Pearson coefficient of correlation and	
	Spearman's rank correlation coefficient. Physical interpretation of numerical	
	value of the rank correlation coefficient. Linear Regression analysis (when	
	the experimental output depends on one input). Illustrative examples from	
Modula_1	engineering field, multiple regression analysis.(When the experimental	
Iviouuic-1	output depends on two inputs).	
	Probability: Discrete Random Variables: Definitions of PDF & CDF:	
	Expectation and Variance: Binominal pdf- Illustrative examples.	
	Self-study/Applications: Poisson probability distribution function-	
	Illustrative examples.	
	Continuous Random Variables: Definition of PDF and CDF, Expectation	
	and Variance, illustrative examples.	
	Probability distribution: Exponential pdf, Normal/Gaussian pdf.	
Module-2	Discussion on the choice of PDF. Illustrative examples from engineering	
	field.	
	Self-study/Applications: Uniform pdf, Current measurement problems,	
	Digital transmission channel. Detection of signal.	
	Confidence intervals & Hypothesis analysis: Introduction, Testing a	
	hypothesis, central limit theorem-statement, Level of significance, Simple	
	sampling of attributes, confidence intervals, Test of significance for large	
Module-3	samples, Comparison of large samples, Student's t-distribution, Chi-square	
	distribution.	
	Self-study/Applications: Propellant burning rate, process-capacity problem,	
	drying time problem, Two catalyst effect on chemical reaction.	
	Joint Probability Distribution & Stochastic Processes: Concept of joint	
	probability, Joint distributions of discrete random variables, Independent	
	random variables-problems. Joint expectation, co-variance, and correlation.	
Module-4	Markov Chains: Introduction, stochastic matrices, fixed probability vectors	
	and regular stochastic matrices. Application of Markov chain to determine	
1		

Self-study/Applications: Estimating the population distribution of a city due to migration.

Note -1. Theorems and properties without proof. Applicable to all the modules.

2. Self study part is not included for Semester End Examination.

Text Books:

- 1. Dr. B. S. Grewal, Higher Engineering Mathematics, Khanna Publications, 44thEdition, 2016.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley India Pvt. Ltd 9th edition, 2014.
- 3. B V Ramana Higher Engineering Mathematics, Tata McGraw Hill Publications, 2nd edition, 2007.

Reference Books:

- 1. Scott L.Miller, Donald G. Childers: "Probability and Random Process with application to Signal Processing", Elsevier Academic Press, 2nd Edition, 2013.
- Statistics for engineers and Scientists, William Navide, Mc-Graw hill education, India pvt. Ltd., 3rd edition 2014.
- T.Veerarajan: "Probability, Statistics and Random Process", 3rd Edition, Tata McGraw Hill Co., 2008.
- Theory and problems of probability, Seymour Lipschutz and marclarslipson, Schaum out line series, 2nd edition.

Web links

- <u>http://nptel.ac.in/courses.phd?disciplineID=111</u>
- http://www.class-central.com/subject/math(MOOCs)
- http://academicerath.org/

ACTIVITIES:

- 1. Negative binomial distribution: Failure of server's problems,
- 2. Poissondistribution: Contamination problem, flaws in wires.
- 3. Exponential distribution: lack of memory property.
- 4. Continuous random variable: Shaft conforms.
- 5. Continuous random variable: detection of signal, Digital transmission channel.
- 6. Hypothesis analysis Depression treatment.
- 7. Hypothesis analysis defect in printed circuit board.
- 8. Confidence levels: Doping the cement with lead effect on percentage of calcium.
- 9. Current measurement problems, Propellant burning rate, process-capacity problem, drying time problem, two catalyst effect on chemical reaction.
- 10. Application of Markov chain in estimating the population distribution of a city due to migration.
- 11. Application of Multiple regression when exp. output depends on 3, 4,.5 inputs.
- 12. Application of Markov chain to determine the voting tendencies.
- 13. Curve fitting.

Course Title	Linear Algebra and Applications for ALML and CSBS		
Course Code	22MA401	Course Type	Regular
SEE duration	3hours	(L-T-P-C)	(2-2-0-3)
CIE(Theory) marks	30	Hours / Week	04
CIE (Activity) marks	20	SEE marks	50

Course Objective: Students will be trained to acquire knowledge in linear algebra and its applications.

Course outcomes: Having studied this course, students will be able to:

COs	Outcomes	POs	PSOs
CO1	Apply suitable solution procedure to solve the linear models of business, engineering, economics and apply matrix factorization to applications such as computer graphics.	PO1,PO2,PO3	-
CO2	To compute suitable matrices arising in magnification, rotation of images using the knowledge of vector space, matrix of linear transformations.	PO1,PO2,PO3	-
CO3	Analyze the application-oriented problems connected with difference equations, Markov chain, and discrete dynamical systems by using the concept of Eigen values, Eigen vectors.	PO1,PO2,PO3	-
CO4	Apply the techniques of singular value decomposition, PCA, to analyze the process of data compression/image processing.	PO1,PO2,PO3	-

CO-PO Mapping:

	PO1	PO2	PO3
CO1	3	2	1
CO2	3	2	1
CO3	3	2	1
CO4	3	2	1

Course Content:

Modulos		No. of
wiodules	Contents	
	Linear Algebra: Importance of Matrices in engineering. Rank of a matrix.	
Module 1	Consistency of nonhomogeneous and homogeneous system of equations,	
	Solution of the system of linear equations by Gauss elimination method and	
	Gauss - Seidel iterative method. Linearly dependent and independent	
	vectors. Applications of solution of system of equations to balance the	
	chemical equations. Traffic flow problem. To find the suitable combination	
	of food stuff so as to get the desired nutrients as prescribed by a dietician.	
	Self-Study- linear models in business and engineering, Partitioned matrices,	
	Matrix factorization, the Leontief input -output model, application to	
	computer graphics.	10 hours
	Vector space, subspace, basis of a vector space, dimension of a vector space,	
	introduction to linear transformation, rank, nullity of a linear transformations,	
Module 2	matrix of a linear transformation. Special matrices-matrix of rotation,	
	reflection, translation.	
	Self-Study- To find the matrix of transformation when the image of some	
	points is given.	
	Eigen value, Eigen vectors, applications of diagonalization, Jordan canonical	
	form. Application to discrete dynamical systems- coupled differential	
M. 1.1. 2	equations governing the electrical circuits systems, applications to difference	
Module 3	equations, applications to web page ranking.	
	Self-Study- Stretching of an elastic membrane, to determine the growth of a	
	population model. Role of eigenvalues, eigenvectors in determining natural	10 Hours
	frequency, mode shapes of equations of motions (Spring mass system).	10 110015
Module 4	Orthogonal sets, orthogonal projections, Gram Schmidt process, QR-	
	factorization, lest square problems, multiple regression through matrix	
	approach, singular value decomposition theorem, examples. Principal	
	component analysis- applications of PCA to data compression, image	10 Hours
	processing.	10 110015
	Self-Study- Application of eigen value eigen vectors in Signature testing,	
--------	--	
	Face recognition. Stability analysis of differential equations which governs	
	the dynamical systems using the concept of eigen value, eigen vectors.	
Note -	-1. Theorems and properties without proof. Applicable to all the modules.	
2	. Self study part is not included for Semester End Examination.	
Text l	Books:	
1.	David C. Lay, Steven R. Lay and J.J. Mc Donald: Linear Algebra and its Applications, 5th	
	Edition, Pearson Education Ltd., 2015.	
Refer	ence Books:	
1	E. Kreyszig, "Advanced Engineering Mathematics", 10th edition, Wiley, 2015.	
2	R. K. Jain and S. R. K. Jain & S. R. K. Iyengar, Numerical methods, New age International pvt.	
	Publishers, 6 th edition, 2014.	
3	Gilbert Strang: Linear Algebra and its Applications, 4th Edition, Cenage publications, 2014.	
Web	links	

- <u>http://nptel.ac.in/courses.phd?disciplineID=111</u>
- http://www.class-central.com/subject/math(MOOCs)
- http://academicerath.org/

ACTIVITIES:

- 1. Role of eigenvalues, eigenvectors in determining natural frequency, mode shapes of equations of motions (spring mass system).
- 2. Lenovo input output method application to balance the economy of a Country.
- 3. Applications of factorization of matrices-google recommendation.
- 4. Jordan canonical form when minimal polynomial and characteristic polynomial is given and its application in Engineering.
- 5. Diagonalize a matrix and determining the principal stresses.
- 6. Application of Eigen value Eigen vectors in data compression, Signature testing, Face recognition.
- 7. Least square solution of system of equations- a matrix approach.
- 8. Application of Eigen value Eigen vectors in Google page ranking.

Course Title	Discrete Mathematical Structures Computer Science/ALML/CSBS Engineering		
Course Code	22MA402	Course Type	Regular
SEE duration	3hours	(L-T-P-C)	(2-2-0-3)
CIE(Theory) marks	30	Hours / Week	04
CIE (Activity) marks	20	SEE marks	50

Course Objective:

1. To introduce Discrete structures and principle of Combinatorics which can be employed as tools in the applications of Computer Science & Information Technology.

Course Outcomes: Having studied this course, students will be able to

COs	Outcomes	POs	PSOs		
CO1	Apply logic and counting principles to model and analyze problems of computer science & engineering	PO1,PO2	-		
CO2	CO2 Apply the concepts of logic to identify methods of mathematical proofs.				
CO3	Use concepts of functions in analyzing problems on algorithms and programs.	PO1,PO2	-		
CO4	CO4 Model and analyze programming problems related to coding theory.				
CO5	CO5 Derive mathematical model for real life problems related to Information science and Engineering.				

CO-PO Mapping:

	PO1	PO2
CO1	3	2
CO2	3	2
CO3	3	2
CO4	3	2
CO5	3	2

Course Content:

Modules	Contents		
Module 1	Principles of Counting: The rule of sum and product, permutation principle, combination principle, rule of generalized Permutations and Combinations, odule 1 Fundamentals of Logic: Basic logic connectives and truth tables. Logical equivalence and Tautologies. Statement of laws of logic. Self-study: Set theory – set operations, Venn diagram, Inclusion Exclusion principle.		
Module 2	Module 2Fundamentals of Logic contd.: Logic implication - Rules of inference theory. Application of switching network.Module 2Relations-definition and elementary properties, Partially ordered sets, Hasse diagram, Lattice.Self-study:Quantifiers, methods of proof, equivalence relations, partition of a set induced by a relation		
Module 3	Functions: Ceiling function, Floor function, Characteristic function, and Application of Stirling numbers of second kind. Application of functions in vending machine.Self-study: one to one and onto functions, Composition of functions		
Module 4Coding theory: Elements of coding theory, the humming matric, the parity – check and Generator matrices, Group codes: Decoding with coset leaders. Hamming matrices. Self-study: sub-groups, cosets, Matrix row operations.		10 Hours	

2. Self study part is not included for Semester End Examination.

Textbooks:

Discrete and Combinatorial Mathematics, R C Grimaldi, Pearson's publications, 5th edition, 2007.

Reference Books:

Discrete Mathematical Structures, by D. S. Malik & M. K. Sen, Thomson's Publications, First edition, 2006.

Web links

- http://nptel.ac.in/courses.phd?disciplineID=111
- http://www.class-central.com/subject/math(MOOCs)
- http://academicerath.org/

Activities List

- 1. Application of switching network
- 2. Application to algorithm testing using computational complexity.
- 3. Computation of number of different ways n rooks can be arranged on an n x n chess board so that no two rooks can attack each other for all positive integers n.
- 4. Discuss ways in which the current telephone numbering plan can be extended to accommodate the rapid demand for more telephone numbers.
- 5. Application of functions in vending machine.

Course Title	Ability Enhancement Course Statistics with R Lab for machine learning Electrical and Electronics Engineering			
Course Code	22AEC401Course TypeRegular			
SEE duration	3hours	(L-T-P-C)	(0-0-2-1)	
Daily evaluation	30	Hours / Week	02	
Final CIE	20	SEE marks	50	

Course Objective: Students will be trained to acquire knowledge in linear algebra and Statistics With python/R Programming and its applications.

COs	Outcomes	POs	PSOs
CO1	Write the programme for the mathematical procedure connected with probability, hypothesis testing, co-relation and regression.	PO1,PO2	-
CO2	Execute the programme and provide perfect output.	PO1,PO2	-

Course Outcomes: Having studied this course, students will be able to

CO-PO Mapping:

	PO1	PO2
CO1	3	2
CO2	3	2

Course Content:

Lab 1- To predict the conditional probabilities using Bayes theorem.

Lab 2- To predict the probability of discrete random variable- Binomial.

Lab 3- To predict the probability of discrete random variable- Poisson.

Lab 4- To predict the probability of discrete random variable- Hyper geometric.

Lab 5- To predict the probability of continuous random variable in an interval (Uniform random variable, exponential variable).

Lab 6- To predict the probability of continuous random variable in an interval (Normal random variable).

Lab 7- To predict the probability of application connected with Markov process in long run.

Lab 8- To compute the confidence interval for mean and standard deviation.

Lab 9- Hypothesis testing on application problem connected with mean, variance, proportions when sample size is large.

Lab10- Hypothesis testing on application problem connected with mean, variance, proportions when sample size is less (student's T distribution, chi square distribution)

Lab 11- Examining the correlation of the experimental data.

Lab 12- Carryout linear regression and multiple regression analysis for the experimental data.

Daily Evaluation (for 20 Martes)	Montra	CO	DO	Laval
Daily Evaluation (101 50 Walks)	IVIALKS		rU	Level
	0			
Manual Solving	8	COI	P01,PO2	L3,L4
Record writing & Observation	6	CO 1	PO 1	I 3
Record writing & Observation	0		101	
	1.6			.
Executing the programme with	16	CO 2	PO 2,	L 4
correct output				
F			PO 5	
Final CIE	20	CO^2	PO 2	I A
I mai CIL	20		102,	
			PO 5	

Rubrics for Evaluation

Course Title	Bridge Course for Diploma Students BRIDGE COURSE MATHEMATICS - I (Common to all Branches of Engineering) (Audit Course)		
Course Code	22BCM301	Course Type	Regular
CIE duration	One and half hour	(L-T-P-C)	(3-0-0-0)
CIE-1marks	50	Hours / Week	03
CIE -2 marks	50		

Course Objective – To introduce simple concepts of calculus and numerical methods.

COS	Having studied this course, students will be able to	POs	PSOs
CO1	Solve simple problems on determinants, matrix multiplication, partial differentiation, and integration.	PO1	-
CO2	Compute the roots of transcendental equations and interpolate when the experimental data is given.	PO1	-
Co3	Expand the given function in terms of Taylor/ Macluarin's series.	PO1	-

CO-PO Mapping:

	PO1
CO1	1
CO2	1
CO3	1

Course Contents

Module - 1	Basic Formulas: Partial fractions. Matrices and determinants: matrix			
	multiplication, evaluation of determinants, finding inverse.			
	Differentiation-I: Review of limit and Continuity, differentiation- Basic			
	formulas, Sum rule, product rule, quotient rule, chain rule and problems.			
	Differentiation-II: Taylor's series, and Macluarin's series of simple	10		
	functions for single variable, simple problems.	hours		

Module - 2	Partial Different	tiation: Definition, Illustrative examples on Partial		
	differentiation,	Total differentiation, chain rule, Differentiation of		
	composite and in	mplicit functions, Jacobians, illustrative examples and		
	problems, simple problems.			
Module - 3	Integration: Basic	c formulas, Illustrative examples, evaluation of definite		
	integrals, Integrat	ion by parts, Bernoulli's rule of Integration.		
	Integral calculus:	Reduction formula for functions $sin^n x$, $cos^n x$ (without		
	proof), Simple pro	oblems, Double & triple integration, simple problems with	10	
	standard limits.		hours	
Module - 4	Numerical Metho	ods - Numerical Solution of algebraic & transcendental		
	equations by Bise	ection method, Newton Raphson method, Regular Falsi		
	method.			
	Numerical Interp	polation-Definition of forward, backward differences,		
	Newton's forwar	rd and backward interpolation formulae, Lagrange's		
	interpolation for	mula, central difference formulas-Bessel and Stirling	12	
	formulas, illustrat	tive examples.	hours	
Note - Theore	ms and properties v	without proof. Applicable to all the units.		
Text Books:				
1. Dr. B. S. Grewal, Higher Engineering Mathematics, Khanna Publications,				
40th edition (2007).				
2. Erwin	2. Erwin Kreyszig, Advanced Engineering Mathematics, Tata McGraw Hill			
Public	Publications, 8th edition (2007).			
Reference Bo	oks:			
1. Ca	culus by Thomas Fin	ney, 9th edition, Pearson education, 2002.		
2. N. Re	2. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint 2010			
links				
<u>http://hptei.ac.in/courses.phd?disciplineID=111</u>				
 http://www.class-central.com/subject/math(WOOUs) http://academicereth.org/ 				
Course Title		Bridge Course for Diploma Students		
		BRIDGE COURSE MATHEMATICS - II		

	(Common to all Bra (Audit Course)	(Common to all Branches of Engineering) (Audit Course) 22BCM401 Course Type			
Course Code	22BCM401				
SEE duration	3hours	(L-T-P-C)	(3-0-0-0)		
CIE-1marks	50	Hours / Week	03		
CIE -2 marks	50				

SCourse Objective – Having studied this course, students will be able to

	Outcomes	POs	PSOs
CO1	Identify suitable methods to solve the differential equations analytically.	PO1	-
CO2	Solve first order first degree D E, integration problems and simple PDE problems using numerical methods.	PO1	-
CO3	Solve problems on Gradient, Divergence, and Curl of a vector valued function.	PO1	-

CO-PO Mapping:

	PO1
CO1	1
CO2	1
CO3	1

Course Contents:

Module - 1	Differential Equations: Solution of first order first degree differential equations- Variable separable methods, Homogeneous Equations, Exact differential equations, illustrative examples from engineering field. Linear& Bernoulli's differential equations, Illustrative examples from engineering field.	10 hours
Module - 2	Differential Equations: Solution of second and higher order equations with constant coefficient by inverse differential operator method $f(D)y =$	10 hours

	e^{ax} , f(D)y = cos(ax + b)/sin (ax + b), $f(D) = ax^2 + bx + cf(D)y =$	
	$e^{ax}\cos(bx+c)/e^{ax}\sin(bx+c,f(D)y=x\cos(ax+b)/x\sin(ax+b))$	
	b)(Simple problems). Illustrative examples from engineering field.	
	Numerical solution of first order first degree ordinary differential	
	equations: Taylor series method, Runge-Kutta method of fourth order,	
	Milne's Predictor corrector methods.	
Module – 3	Solution of Partial Differential Equations: Solving PDE by variable	
	separable method, to find all possible solutions of one-dimensional wave	
	equation, one dimensional Heat flow equation and two-dimensional	
	Laplace's equation by the method of separation of variables, numerical	10
	solution of Laplace equation by finite difference approximation method	hours
	using standard five point formula and diagonal five point formula.	
	Numerical solution of poison equation by finite difference approximation	
	method using standard five-point formula and iterative formulas.	
Module - 4	Numerical Integration: Computation of line integral by trapezoidal rule,	
	Simpsons 1/3rd rule, Weddle's rule, Simpsons 3/8th rule, Illustrative	
	examples from engineering field.	12
	Vector Algebra: vector addition, Multiplication (Dot and Cross product),	hours
	Triple products, vector differentiation, velocity, acceleration of a vector	
	point function, Gradient, divergence, curl.	
i de la companya de la		

Note - Theorems and properties without proof. Applicable to all the units.

Text Books:

- Dr. B. S. Grewal, Higher Engineering Mathematics, Khanna Publications, 40th edition (2007).
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, Tata McGraw Hill Publications, 8th edition (2007).

Reference Books:

1. Calculus by Thomas Finney, 9th edition, Pearson education, 2002.

N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2010. Web links

- <u>http://nptel.ac.in/courses.phd?disciplineID=111</u>
- http://www.class-central.com/subject/math(MOOCs)
- http://academicerath.org/

MALNAD COLLEGE OF ENGINEERING, HASSAN (An Autonomous Institution Affiliated to VTU, Belgaum)

Autonomous Programmes

Bachelor of Engineering

DEPARTMENT OF MATHEMATICS

Open Electives

SYLLABUS

Academic Year 2023-24

Scheme of evaluation (Theory courses)

Assessment	Marks
Three CIE's	40
Activity	10
SEE	50
Total	100

Examination	Maximum marks	Minimum marks to qualify
CIE	50	20
SEE	50	20

Course Title	Open Elective for B.E. Students Linear Algebra & Numerical Methods		
Course Code	200EMA61	Course Type	OE
SEE duration	3hours	(L-T-P-C)	(3-0-0-3)
CIE(Theory) marks	40	Hours / Week	03
CIE (Activity) marks	10	SEE marks	50

Course Objective: Is to train students in linear algebra, numerical methods and its applications.

Course outcomes: Having studied this course, students will be able to:

COs	Outcomes	PO's	PSO's
CO1	Apply suitable solution procedure to solve the linear models of business, engineering, economics and examine for various methods to solve differential equations, interpolation examples, system of equations.	PO1,PO2,PO3	-
CO2	To compute suitable matrices arising in magnification, rotation of images using the knowledge of vector space, matrix of linear transformations.	PO1,PO2,PO3	-
СОЗ	Analyze the application-oriented problems connected with difference equations, Markov chain, discrete dynamical systems by using the concept of Eigen values, Eigen vectors.	PO1, PO2,PO3	-
CO4	Apply the techniques of singular value decomposition, PCA, to analyze the process of data compression/image processing.	PO1,PO2,PO3	-

CO-PO Mapping:

	PO1	PO2	PO3
CO1	3	2	1
CO2	3	2	1
CO3	3	2	1
CO4	3	2	1
CO5	3	2	1

Course Content:

Modules	Contents	No. of hours	
	Applications of system of equations to business and economics introduction to		
Module 1	linear transformation, rank, nullity of linear transformations, matrix of a linear		
	transformation.	10 hours	
	Eigen value, Eigen vectors, diagonalization, application to discrete dynamical		
Module 2	systems and difference equations. Applications to web page ranking, applications		
	of diagonalization, Jordan Canonical Form.	10 hours	
	Orthogonal sets, orthogonal projections, Gram Schmidt process, QR-factorization,		
Module 3	multiple regressions through matrix approach, singular value decomposition		
inio duite 5	theorem, examples. Principal component analysis- applications of PCA to data		
	compression, image processing.	10 hours	
	Numerical Methods- to find the solution of system of non linear equations, to	12 hours	
	compute eigen value, eigen vectors by rutishar method, cubic spline interpolation,		
Madula 4	numerical double integration by simpson's rule. To solve linear second order		
Module 4	and non linear second order differential equation by Finite difference methods.		
	Solution of system of linear equations by SOR method, ill conditioned system,		
	condition number, discussion on the convergence of iterative methods.		
Text Book	s:		
1. David C. Lay, Steven R. Lay and J.J. Mc Donald: Linear Algebra and its Applications, 5th			
Pearson Education Ltd., 2015.			
2. Narasingh Deo, Graph theory, PHI publications, 1st Edition			

 R. K. Jain and S. R. K. Jain & S. R. K. Iyengar, Numerical methods, New age International pvt. Publishers, 6thedition, 2014.

Reference Books:

- 1. E. Kreyszig, "Advanced Engineering Mathematics", 10th edition, Wiley, 2015.
- 2. Gilbert Strang: Linear Algebra and its Applications, 4th Edition, Cenage publications, 2014.

Web links

- <u>http://nptel.ac.in/courses.phd?disciplineID=111</u>
- http://www.class-central.com/subject/math(MOOCs)
- http://academicerath.org/

Course Title	Open Elective for B.E. Students Operation Research		
Course Code	200EMA62	Course Type	OE
SEE duration	3hours	(L-T-P-C)	(3-0-0-3)
CIE(Theory) marks	40	Hours / Week	03
CIE (Activity) marks	10	SEE marks	50

Course Objective: Is to train the students with mathematical models and various Operational Research techniques.

Course outcomes: Having studied this course, students will be able to:

COs	Outcomes	POs	PSOs
CO1	Analyze and apply various Operational Research techniques constructively to make effective business decisions	PO1,PO2,PO3	-
CO2	To analyze the mathematical models used in Operational Research	PO1,PO2,PO3	-
CO3	Use modern tool to solve/visualize mathematical problems arising in Operational Research.	PO1,PO2,PO5	-

CO PO Mapping:

	PO1	PO2	PO3	PO5
CO1	3	2	1	-
CO2	3	2	1	-
CO3	3	2	-	1

Course Content:

Modules	s Contents	
	Transportation Problem (I-C)	
Module 1	Finding initial basic feasible solution by Least cost method, Vogel's approximation method. Optimization using – Modified Distribution (MODI) Method testing for optimality of balanced transportation problems. Assignment (Hungarian method: balanced and unbalanced) and travelling	
	salesman problems (No degeneracy problems)	10 hours
	Network Analysis	
Module 2	Project Scheduling and PERT-CPM: Introduction, Basic Difference between PERT and CPM, PERT/CPM Network Components and Precedence Relationship, Project Management – PERT Sequencing: Introduction, processing N jobs through two machines:	
	processing N jobs through two machines (Johnson's method).	10 hours
	Dynamic Programming	
Module 3	Dynamic programming multistage decision processes – types – concept of sub optimization and the principle of optimality – computational procedure in dynamic programming – examples illustrating the calculus method of solution - examples illustrating the tabular method of solution(Product Allocation Problem, Airline Problem and Dynamic programming problem leading to linear programming problem(only 2 constraints)).	10 hours
	Game Theory (I-C)	
Module 4	Decision Analysis and Games Decision under uncertainty, Game theory, Some basic terminologies, Optimal solution of two-person zero sum game, Solution of mixed strategy games, graphical solution of games, linear programming solution of games.	12 hours

Text Books:

 Optimization Methods in Operations Research and systems Analysis" – by K.V. Mittal and C.Mohan, New Age, International (P) Limited, Publishers

Reference Books:

1.Operations Research – by S.D. Sharma, Kedarnath Ramanath& Co

2. Linear programming, G. Hadley, Narosa Publishing House, New Delhi.

<u>Web links</u>

- <u>http://nptel.ac.in/courses.phd?disciplineID=111</u>
- http://www.class-central.com/subject/math(MOOCs)
- http://academicerath.org/

Course Title	Open Elective for B. Numerical Methods	Open Elective for B.E. Students Numerical Methods		
Course Code	200EMA63	Course Type	OE	
SEE duration	3hours	(L-T-P-C)	(3-0-0-3)	
CIE(Theory) marks	40	Hours / Week	03	
CIE (Activity) marks	10	SEE marks	50	

Course Objective: is to train students to acquire knowledge in numerical methods and its applications.

Course outcomes: Having studied this course, students will be able to:

COs	Outcomes	POs	PSOs
CO1	Compute, input corresponding to the output of the experimental data, Root of equations and solve nonlinear/linear system of equations using suitable methods.	PO1,PO2, PO3	-
CO2	Analyze the behavior of the experimental data, fit a suitable piece wise polynomials/spline, approximate by chebschev polynomial and carryout the double interpolation, numerical double integration.	PO1,PO2,PO3	-
CO3	Examine the system, compute the eigen value /eigen vectors using suitable methods, and obtain the solution of difference equations, initial value and boundary value problems.	PO1,PO2,PO3	-
CO4	Solve second order linear differential equations by Ritz finite element method with linear piecewise polynomials for two and three elements of equal length.	PO1,PO2,PO3	-

CO-PO Mapping:

	PO1	PO2	PO3
CO1	3	2	1
CO2	3	2	1
CO3	3	2	1
CO4	3	2	1

Course Content:

Modules Contents		No. hours	of
	TRANSCENDENTAL AND POLYNOMIAL EQUATIONS: Newton Raphson Method, Rate of Convergence of Newton Raphson Method,		
	Roots- Newton's method, Choice of an Iterative Method and Implementation.		
	SYSTEM OF LINEAR ALGEBRAIC EQUATIONS AND EIGEN		
Module 1	VALUE PROBLEMS: Linear system of equations, Solution of Linear system of equations by Gauss elimination method and LU decomposition method, ill conditioned system, Eigen values and Eigen vectors, Rayleigh power method, Gerschgorin theorem-to find the interval which contains the eigen value of a matrix ,to find bounds of the eigen values , Rutishauser method to find the eigen values of an Arbitrary Matrices-to find the eigen values and eigen vectors based on the concepts of rank.	10 hour	rs
Module 2	INTERPOLATION AND APPROXIMATION:		
	Lagrange's interpolation, Piecewise interpolation- piecewise linear, quadratic, cubic interpolation, Spline Interpolation – quadratic and cubic	10 hour	rs

	spline interpolation, Lagrange Bivariate Interpolation polynomial, Least			
	Squares Approximation-to obtain a least square polynomial of degree one			
	and two for the given function, using Chebyshev polynomial approximation			
	-to obtain second degree polynomial approximation.			
	Numerical Integration:			
	Numerical Integration- line integral-Simpson's 1/3rd rule			
	Numerical Double Integration- Trapezoidal and Simpson's 3/8th rule.			
	Ordinary differential equations and Difference Equations:			
	To obtain general solution of system of differential equation using eigen			
Module 3	value and eigen vectors, General solution of Difference Equations, to solve			
	second ordered differential equation - initial value problems by Nemerov			
	method.	10 hours		
	Ordinary differential equations: Boundary value problems			
	To solve linear and non-linear second ordered differential equation –			
	boundary value problem using Finite difference method.			
Module 4	Finite element method- To solve second order linear differential equation-			
	boundary value problem by Ritz method, to solve second order linear			
	differential equation by Ritz finite element method with linear piecewise			
	polynomials for two and three elements of equal length.	12 hours		

Text Books:

- Frank R Giordano, William P Fox, Steven B Horton: A first course in mathematical modelling, 5th edition, Cengage Learning India Pvt Ltd., 2015
- R. K. Jain and S. R. K. Jain & S. R. K. Iyengar, Numerical methods, New age International pvt. Publishers, 6thedition, 2014.
- 3. William Nivadi, Statistics for engineers & scientists 3rd edition, McGraw Hill education, 2013

Reference Books:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley India P.v.t. Ltd. 8th Edition, (Wiley student edition) 2004.
- 2. S S Sastry, Introductory Methods of Numerical Analysis, PHI publications, 5th Edition 2013.

Web links

- <u>http://nptel.ac.in/courses.phd?disciplineID=111</u>
- <u>http://www.class-central.com/subject/math(MOOCs)</u>
- http://academicerath.org

Course Title	Open Elective for B.E. Students Linear Programming		
Course Code	200EMA64	Course Type	OE
SEE duration	3hours	(L-T-P-C)	(3-0-0-3)
CIE(Theory) marks	40	Hours / Week	03
CIE (Activity) marks	10	SEE marks	50

Course Objective: Students will be trained to acquire knowledge to do mathematical modelling and their solutions using linear programming methods.

Course outcomes: Having studied this course, students will be able to:

COs	Outcomes	POs	PSOs
CO1	To do mathematical modelling in terms of general linear programming problems.	PO1,PO2,PO3	-
CO2	Analyze and solve linear programming problems by Graphical method, simplex method,	PO1,PO2,PO3	-
CO3	Examine the degeneracy problems, apply Revised simplex method, and able to do Sensitivity Analysis.	PO1,PO2,PO3	-
CO4	Examine to test for Duality in linear programming problems, solve by Dual simplex method, Primal-dual method and provide solutions to Transportation problems.	PO1,PO2,PO3	-

CO-PO Mapping:

	PO1	PO2	PO3
CO1	3	2	1
CO2	3	2	1
CO3	3	2	1
CO4	3	2	1

Course Content:

Modules	Contents	
	Linear programming problems, Statement and formation of general linear	
Module 1	programming problems, Graphical method, Slack and surplus variables,	
	Standard and matrix forms of linear programming problem, Basic feasible	
	solution.	10 hours
Module 2	Linear programming, Simplex method, Artificial variables, Big-M method,	
	two phase method.	10 hours
Module 3	Examine the Resolution of degeneracy, apply Revised simplex method,	
	Sensitivity Analysis.	10 hours
	Duality in linear programming problems, Dual simplex method, Primal-dual	
Module 4	method Integer programming, Transportation problems, Assignment	
	problems.	12 hours

Text Books:

1. Optimization Methods in Operations Research and systems Analysis" – by K.V. Mittal and C.Mohan, New Age, International (P) Limited, Publishers

- 2. Operations Research by S.D. Sharma, Kedarnath Ramanath& Co
- 3. Linear programming, G. Hadley, Narosa Publishing House, New Delhi.
- 4. Linear programming, Guptha, Krishna mandir prakashan meerut publication.

Web links

- <u>http://nptel.ac.in/courses.phd?disciplineID=111</u>
- <u>http://www.class-central.com/subject/math(MOOCs)</u>
- http://academicerath.org/

Course Title	Open Elective for B.E. Students Graph Theory and Combinatorics		
Course Code	200EMA65	Course Type	OE
SEE duration	3hours	(L-T-P-C)	(3-0-0-3)
CIE(Theory) marks	40	Hours / Week	03
CIE (Activity) marks	10	SEE marks	50

Course Objective:

Prepare students to use Graph Theory and Combinatorics as a tool in developing a consistent mathematical model in engineering and technology.

Course Outcomes: Having studied this course, students will be able to

COs	Outcomes	POs	PSOs
CO1	Apply and analyze the concepts of graph theory in switching network and related Engineering problems.	PO1,PO2	-
CO2	Identify and apply concept of trees in determination of shortest path of transportation network.	PO1,PO2	-
CO3	Use and analyze counting principles related to enumeration problems of engineering and technology	PO1,PO2	-
CO4	Use generating functions, rook polynomials, derangements in problems to analyze solution to engineering problems	PO1,PO2	-
CO5	Make use of graph theory and counting principles to Derive mathematical model for real life problems in Engineering.	PO1,PO2	-

CO-PO Mapping:

	PO1	PO2
CO1	3	2
CO2	3	2
CO3	3	3
CO4	3	2
CO5	3	2

Course Content:

Modules	Contents	No. of hours
Module 1	 Graph theory: Definitions and examples, Types of graph- subgraphs, complements, and planar graphs. Matrix representation of a graph, Incidence matrix, sub matrix, circuit matrix. Application: an application to switching net work Self-study: Euler- graphs, Hamiltonian graphs, Graph coloring. 	11 Hours
Module 2	 Trees: Definitions, properties and examples, Rooted trees, Sorting, Weighted trees, and Prefix codes. Applications: Optimization and Matching: Dijkstra's shortest path algorithm. Minimal spanning tree: the Algorithm of Kruskal and Prim. Self-study: Biconnected components and articulation points. 	10Hours

	Fundamental Principles of Counting: The rule of sum and product,	
	permutation principle, combination principle, rule of generalized	
Module 3	Permutations and Combinations. Binomial theorem, Inclusion, and	11Hours
	exclusion principle.	
	Self-study: Pigeonhole principle, Ramsey number, Catalan number	
	Derangements: nothing is in its right place, The rook polynomial.	
	Generating Functions: Introductory examples, calculation	
Module 4	techniques. Partition of integers. Exponential generating functions. The	10Hours
	summation operator.	
	Self-study: Arrangements forbidden position.	

Textbooks:

Discrete and Combinatorial Mathematics, R C Grimaldi, Pearson's publications, 5th edition, 2007.

Reference Books:

1 Graph Theory by Narsingh Deo.

2. Discrete and Combinatorial Mathematics, By Colman.

3.Discrete Mathematical Structures, by D. S. Malik & M. K. Sen, Thomson's Publications, First edition, 2006.

<u>Web links</u>

- <u>http://nptel.ac.in/courses.phd?disciplineID=111</u>
- http://www.class-central.com/subject/math(MOOCs)
- http://academicerath.org/

Course Title	Open Elective for B.E. Students Linear Algebra and Statistics With python/R Programming		
Course Code	200EMA66	Course Type	OE
SEE duration	3hours	(L-T-P-C)	(2-0-2-3)
CIE(Theory) marks	40	Hours / Week	03
CIE (Activity) marks	10	SEE marks	50

Course Objective: Students will be trained to acquire knowledge in linear algebra and Statistics With python/R Programming and its applications.

Course outcomes: Having studied this course, students will be able to:

COs	Outcomes	POs	PSOs
CO1	Utilize the concept of consistency of system of equations to solve the engineering application problems, and compute the principal components of PCA	PO1,PO2,PO3	-
CO2	Analyze the problems connected with probability to apply suitable probability distribution and also, predict the probability in the long run for Markov chain-based problems	PO1,PO2,PO3	-
CO3	Validate an assumption through "hypothesis testing" (that is the assumption is not simply because of chance).	PO1,PO2,PO3	-
CO4	Carry out the analysis of correlation, regression, multiple regression.	PO1,PO2,PO3	-
CO5	write/execute the program for the mathematical procedures connected with probability, correlation, regression	PO1,PO2,PO3	-

CO-PO Mapping:

	PO1	PO2	PO3
CO1	3	2	1
CO2	3	2	1
CO3	3	2	1
CO4	3	2	1
CO5	3	2	1

Course Content:

Modules	Contents	No. of hours
	Linear Algebra: Solution of the system of linear equations. Eigen values and	
Module 1	Eigen vectors, Rayleigh power method to find the highest Eigen value. Illustrative	
	examples. QR factorization, SVD, principal component analysis.	9 hours
	Statistics: Correlation., Linear Regression analysis (when the experimental output	
	depends on one input). Illustrative examples from engineering field, Random	
Module 2	variable, Binominal pdf- Illustrative examples. Poisson probability distribution	
	function- Illustrative examples. Exponential pdf, Normal/Gaussian pdf.	
	Illustrative examples from engineering field.	9 hours
	Hypothesis analysis: Introduction, Testing a hypothesis, central limit theorem-	
	statement, Level of significance, Simple sampling of attributes, confidence	
	intervals, Test of significance for large samples, Comparison of large samples,	
Module 3	Student's t-distribution, Chi-square distribution.	
	Markov Chains: Introduction, stochastic matrices, fixed probability vectors and	
	regular stochastic matrices. Application of Markov chain to determine the voting	
	tendencies.	9 hours

	Lab	programming.	
	1.	Solution of system equations.	
	2.	Computation of eigen value and eigen vector using numerical method/analytical	
		method.	
	3.	To compute the principal components in principle component analysis.	
	4.	To predict the conditional probabilities using Bayes theorem.	
	5.	To predict the probability of discrete random variable- Binomial, Poisson.	
	6.	To predict the probability of continuous random variable in an interval(Normal	
Module 4		random variable, Uniform random variable)	
	7.	To predict the probability of application connected with Markov process in long	
		run.	
	8.	To compute the confidence interval for mean and standard deviation.	
	9.	Hypothesis testing on application problems connected with mean, variance,	
		proportions when sample size is large.	
	10	. Hypothesis testing on application problem connected with mean, variance,	
		proportions when sample size is less(student's T distribution, chi square	
		distribution).	28 hours
Text Book	<u>s</u> :		1
			_

- David C. Lay, Steven R. Lay and J.J. Mc Donald: Linear Algebra and its Applications, 5th Edition, Pearson Education Ltd., 2015.
- 2. Narasingh Deo, Graph theory, PHI publications, 1st Edition
- R. K. Jain and S. R. K. Jain & S. R. K. Iyengar, Numerical methods, New age International pvt. Publishers, 6thedition, 2014.

Reference Books:

- 1. E. Kreyszig, "Advanced Engineering Mathematics", 10th edition, Wiley, 2015.
- 2. Gilbert Strang: Linear Algebra and its Applications, 4th Edition, Cenage publications, 2014.

Web links:

- http://nptel.ac.in/courses.phd?disciplineID=111
- http://www.class-central.com/subject/math(MOOCs)
- http://academicerath.org/