Course Title	Mathematics for A	Mathematics for AI & ML				
Course Code	24MAAI301	(L-T-P) C	(3-1-0) 3			
Exam	3 hours	Hours/Week	03			
SEE	50 marks	Total Hours	42L + 48ABL = 90			

Course Objective: To equip students with the theoretical foundations and analytical skills necessary to model and solve real-world problems in artificial intelligence, machine learning, and engineering through the principles of linear algebra.

Course Outcomes (COs): Upon completion of the course, students shall be able to:

No.	Course Outcomes	Mapping to POs	Mapping to PSOs
	Examine suitable solution procedure to solve the linear	1,2,3	
1.	models, linearly dependency or independency of vectors, the		-
	existence of diagonalization of matrix. Apply matrix		
	factorization to applications such as computer graphics.		
	Compute the Eigen values/Eigen vectors to the given linear	1,2	
2.	system, suitable matrices arising in magnification, rotation of		-
	images using the knowledge of vector space, matrix of linear		
	transformations.		
3.	Analyze the application-oriented problems connected with	1,2,3	_
٥.	difference equations, Markov chain, and discrete dynamical		-
	systems by using the concept of Eigen values, Eigen vectors.		
4.	Apply the techniques of singular value decomposition, PCA,	1,2	_
	to analyze the process of data compression/image processing.		

Course Contents:

Linear Algebra: Importance of Matrices in engineering. Rank of a matrix. Consistency of non-homogeneous and homogeneous system of equations, Solution of the system of linear equations by Gauss elimination method and Gauss – Seidel iterative method.

10 Hours

Module 1

Applications of solution of system of equations to balance the chemical equations. Traffic-flow problem. To find the suitable combination of food stuff so as to get the desired nutrients as

prescribed by a dietician.

Self-Study- linear models in business and engineering, Partitioned matrices, Matrix factorization, the Leontief input—output model, and application to computer graphics.

Module 2 10 Hours

Vector Space: Introduction: Vector space, subspace, basis of a vector space, and dimension of a vector space. Linearly dependent and independent vectors. Introduction to linear transformation: rank, nullity of a linear transformations, matrix of a linear transformation. Special matrices-matrix of rotation, reflection, translation. To find the matrix of transformation when the image of some points is given.

Applications: Transformation of 3D coordinate in robotic arm.

Self-Study- Bases for Null space and Column space. Change of basis in Rⁿ.

Module 3 10 Hours

Eigen value & Eigen vectors: Computation of Eigen value, Eigen vectors, applications of diagonalization, Jordan canonical form. Application to discrete dynamical systems- coupled differential equations governing the electrical circuits systems, applications to difference equations, applications to web page ranking.

Self-Study- Stretching of an elastic membrane, to determine the growth of a population model. Role of Eigen values, eigenvectors in determining natural frequency, mode shapes of equations of motions (Spring mass system).

MODULE - 4 12 Hrs.

Orthogonality & Least Square: Orthogonal sets, orthogonal projections, Gram Schmidt process, QR-factorization, least square problems, multiple regression through matrix approach, singular value decomposition theorem, examples. Principal component analysis- applications of PCA to data compression, image processing.

Self-Study- Application of Eigen value Eigen vectors in Signature testing, Face recognition. Stability analysis of differential equations which governs the dynamical systems using the concept of Eigen value, Eigen vectors.

Note – Theorems and properties without proof. Applicable to all the modules.

Self-study is not included in SEE

Prescribed Text Books:

Sl.	Book Title	Book Title Authors		Publisher	Year
No.					
1.	Linear Algebra and its	David C. Lay, Steven	5	Pearson	2015
	Applications	R. Lay and J.J. Mc	ISBN-	Education Ltd	
		Donald	10:9350517698		

Reference Books:

Sl. No	Book Title	Authors	Edition	Publisher	Year
	Advanced Engineering Mathematics	E. Kreyszig	10	Wiley	2015
2.	Linear Algebra and its Applications	Gilbert Strang		Cenage publications	2014

EBooks and online course materials:

- 1. https://www.geneseo.edu/~aguilar/public/assets/courses/233/main_notes.pdf
- 2. https://theengineeringmaths.com/wp-content/uploads/2017/08/ftransforms.pdf
- 3. https://see.stanford.edu/materials/lsoftaee261/book-fall-07.pdf

Online Courses and Video Lectures:

- 1. https://www.coursera.org/learn/introduction-to-linear-algebra
- **2.** https://archive.nptel.ac.in/courses/111/106/111106135/

Teaching - Learning - Evaluation Scheme:

Sl. No	Teaching and Learning Method	No. of	No. of	Hours/			
		Hours/	Weeks	Semester			
		Week					
1	Class Room Teaching & Learning	3	14	42			
2	Integrated Lab Component	-	-	-			
3	Student Study Hours – Self Learning	1	14	14			
3	Activity Based Learning (ABL1 & ABL2)	-	-	27			
4	Evaluation of Learning Process	-	-	07			
	Total Learning Hours / Semester						

Proposed Assessment Plan (for 50 marks of CIE):

Tool	Remarks	Marks
CIE	Three CIEs conducted for 20 marks each	30
	and reduced to 10 marks	
Activity Details	Details of activities to be conducted	20
	1) Details of activity 1	
	2) Details of activity 2	
	50	

Activity Based Learning (27 Hours)

ABL 1 (14 Hours) : Activity 1 details		Hours
Writing Assignment with Problems	Submission of the final assignment report	14
on concerned to real world	and evaluation. (Questions of Blooms level	
applications.	L3 and Higher)	
Total		14
ABL 2 (13 Hours): Activity 2 details		
Problem Solving Assignment	Understand the input data requirements	1
	Formulate the methodology	4
	Design the solution	4
	Solving the problem and submission	4
Total		13

Evaluation of Learning Process (7 Hours)

Type of Evaluation	Hours
Test (1, 2 and 3)	3
Activity (1 and 2)	1
Semester End Exam	3
Total	7

Course Outcomes	Program Outcomes [POs]												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3	2	1										
CO2	3	2											
CO3	3	2	1										
CO4		3	2										

Course Title	Computational Statistic	es ·	
Course Code	24MACB301	(L-T-P) C	(3-1-0) 3
Exam	3 hours	Hours/Week	03
SEE	50 marks	Total Hours	42L + 48ABL = 90

Course Objective: To equip students with a solid foundation in computational statistics, enabling them to analyze and interpret data, make informed decisions based on statistical evidence, and effectively communicate statistical findings.

Course Outcomes (COs): Upon completion of the course, students shall be able to:

No.	Course Outcomes	Mapping	Mapping to
		to POs	PSOs
	Demonstrate the fundamental statistical concepts, descriptive	1,2	
1.	statistics, sampling estimation of point estimation and		-
	confidence intervals.		
	Apply a range of statistical techniques including hypothesis	1,2	
2.	testing, independence test, simple linear and logistic regression		-
	analysis to solve problems		
3.	Analyze the given datasets using the appropriate statistical	1,2,3	_
<i>J</i> .	methods including multiple-regression analysis, analysis of		_
	variance to draw meaningful conclusions, and effectively		
	communicate the results of their analyses		
4.	Interpret the probability distribution and give the statistical	1,2	_
7.	output and also, predict the probability in the long run for		-
	Markov chain-based problems.		

Course Contents:

Module 1	10 Hours

Introduction to Statistical Concepts:

Introduction to Statistics: Definition and importance of statistics, Types of data and variables, Descriptive Statistics, Measures of central tendency (mean, median, and mode) Measures of variability (range, variance, and standard deviation).

Probability distributions (discrete and continuous): mean, variance and standard deviation.

Exponential distribution, Uniform distribution, Normal distribution.

Applications: Current measurement problems

Self-study: Data visualization techniques (histograms, boxplots).

Module 2

10 Hours

Joint Probability Distribution: Joint distributions of discrete random variables-Marginal probability distribution, Independent random variables, expectation, co-variance, and correlation.

Markov Chains: Regular stochastic matrices, transition probability matrix, transition-probability matrix, higher transition-probabilities, stationary distribution of regular Markov chains and irreducible Markov chain.

Applications: Application of Markov chain to determine the voting tendencies.

Self-study: Estimating the population distribution of a city due to migration.

Module 3 10 Hours

Statistical Inference

Sampling and Estimation: Sampling methods and techniques, Point estimation and confidence intervals, Sample size determination.

Hypothesis Testing: Introduction to hypothesis testing- Null and alternative hypotheses, Type I and Type II errors, significance level, and p-values. Parametric Tests: One-sample and two-sample-z-tests, t-tests. Chi-square test for independence of test.

Applications: Propellant burning rate, process-capacity problem, drying time problem

MODULE - 4 12 Hrs.

Statistical Models and Analysis

Introduction to Regression Analysis- Simple linear regression: Assumptions and interpretation. Coefficient of determination (R-squared). Multiple Regression Analysis: Multiple linear regression. Logistic regression, Odds ratio and interpretation.

Analysis of Variance (ANOVA): One-way ANOVA and two-way ANOVA.

Self-study: Model assumptions and diagnostics, Variable selection techniques (stepwise, backward, forward), Analysis of Categorical Data

Note – Theorems and properties without proof. Applicable to all the modules.

Self-study is not included in SEE

Prescribed Text Books:

Sl.	Book Title	Authors	Edition	Publisher	Year
No.					
1.	Fundamentals of Statistics	S C Gupta	7	Himalaya Publishing House	
2.	Statistics for Business: Decision Making and Analysis	Robert Stine	2	Pearson	2017
	Probability, Statistics and Random Process	T Veerarajan	3	Tata McGraw Hill Co.	2008

Reference Books:

Sl. No	Book Title	Authors	Edition	Publisher	Year
1.	Introduction to	Gareth James, Daniela Witten, Trevor			
	Statistical Learning	Hastie, and Robert Tibshirani			
	with Applications in R				
2.	Statistical Computing	Maria L. Rizzo, Chapman and	2	Taylor and	2019
	with R	Hall/CRC		Francis Group	
3.	Bayesian Data Analysis	Andrew Gelman, John B. Carlin, Hal			
		S. Stern, David B. Dunson, Aki			
		Vehtari, and Donald B. Rubin			
4.	Numerical Recipes: The	William H. Press, Saul A. Teukolsky,			
	Art of Scientific	William T. Vetterling, and Brian P.			
	Computing	Flannery			

E Books and online course materials:

- 1. https://www.coursera.org/learn/the-power-of-statistics
- 2. https://nptel.ac.in/courses/110107114

Online Courses and Video Lectures:

1. https://www.coursera.org/learn/stanford-statistics

2. https://www.coursera.org/learn/machine-learning-probability-and-statistics

3. https://onlinecourses.nptel.ac.in/noc21_ma74

Teaching - Learning - Evaluation Scheme:

Sl. No	Teaching and Learning Method	No. of	No. of	Hours/		
		Hours/	Weeks	Semester		
		Week				
1	Class Room Teaching & Learning	3	14	42		
2	Integrated Lab Component	-	-	-		
3	Student Study Hours – Self Learning	1	14	14		
3	Activity Based Learning (ABL1 & ABL2)	-	-	27		
4	Evaluation of Learning Process	-	-	07		
Total Learning Hours / Semester						

Proposed Assessment Plan (for 50 marks of CIE):

Tool	Remarks	Marks
CIE	Three CIEs conducted for 20 marks each	30
	and reduced to 10 marks	
Activity Details	Details of activities to be conducted	20
	3) Details of activity 1	
	4) Details of activity 2	
	50	

Activity Based Learning (27 Hours)

ABL 1 (14 Hours) : Activity 1 details			
Writing Assignment with Problems	Submission of the final assignment report	14	
on concerned to real world	and evaluation. (Questions of Blooms level		
applications.	L3 and Higher)		
Total		14	
ABL 2 (13 Hours): Activity 2 details			
	Understand the input data requirements	1	

	Formulate the methodology	4
Problem Solving Assignment	Design the solution	4
	Solving the problem and submission	4
Total		13

Evaluation of Learning Process (7 Hours)

Type of Evaluation	Hours
Test (1, 2 and 3)	3
Activity (1 and 2)	1
Semester End Exam	3
Total	7

Course Outcomes		Program Outcomes [POs]											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3	2											
CO2	3	2											
CO3	3	2	2										
CO4	3	2											

Course Title	Mathematics-III	Mathematics-III for Computer Science Engineering					
Course Code	24MACS301	4MACS301 (L-T-P) C (4-0-0) 4					
Exam	3 hours	Hours/Week	04				
SEE	50 marks	Total Hours	56L + 64ABL = 120				

Course Objective: To introduce linear algebra and Probability theory which can be employed as tools in solving engineering application problems.

Course Outcomes (COs): Upon completion of the course, students shall be able to:

No.	Course Outcomes	Mapping to POs	Mapping to PSOs					
	Demonstrate the matrix concepts and solution techniques to solve							
1.	systems of linear equations and perform geometric transformations	1	-					
	in engineering applications.							
	Apply concepts of Eigen values, eigenvectors, and matrix							
2.	factorization techniques to solve engineering problems and	1,2	-					
	analyze models such as elastic deformation and population growth.							
3.	Analyze and apply various probability distributions and		_					
<i>J</i> .	statistical measures, including mean, variance, and cumulative	1						
	distribution functions, to solve engineering and real-world	1						
	problems.							
4.	Analyze the problem connected with sampling theory and apply							
4.	the same to engineering problems. Also model real life	1,2	-					
	problems/engineering application problem and solve the same.							
Cour	Course Contents:							

Linear Algebra: Importance of Matrices in engineering. Rank of a matrix. Consistency of non-homogeneous and homogeneous system of equations, Solution of the system of linear equations by Gauss elimination method and Gauss – Seidel iterative method. Special matrices-matrix of rotation, reflection, translation. To find the matrix of transformation when the image of some points is given. Eigen values and Eigenvectors Illustrative examples, Applications-Stretching of an elastic membrane. Diagonalization and powers of 3X3 matrices when Eigen values are already given.

14 Hours

Module 1

Applications: Traffic flow problem. To determine the growth of a population model. Rayleigh power method to find the highest Eigen value.

Self-Study-- Stability analysis of differential equations which governs the dynamical systems using the concept of Eigen value, eigenvectors.

Module 2 10 Hours

Random Variables: Random variables (discrete and continuous), Probability density function, Cumulative distribution function, Mean and Variance. Probability Distributions: Binomial and Poisson distributions, Exponential distribution and Normal distribution.

Application: Current measurement problems, Digital transmission channel. Detection of signal. **Self-Study:** Uniform distribution.

Module 3 10 Hours

Joint probability distribution: Joint distribution of Discrete random variables- Marginal probability distribution, Independent random variable, Expectation, Covariance, Correlation coefficient.

Markov chains- Regular stochastic matrices, transition-probability matrix, Higher transition-probabilities, Stationary distribution of regular Markov chains and irreducible Markov chain.

Application: Application of Markov chain to determine the voting tendencies, Estimating the population distribution of a city due to migration.

Self-Study: Joint probability distribution-Continuous random variables

MODULE - 4 12 Hrs.

Sampling Distribution: Continuous probability distribution: Exponential pdf, Normal/Gaussian pdf. Discussion on the choice of PDF. Illustrative examples from engineering field. Population and sampling, sampling with and without replacement, sampling distribution of means, sampling distribution of proportions, sampling distribution of differences and sums.

Confidence intervals and Hypothesis testing: Brief introduction to confidence intervals, Testing a hypothesis, central limit theorem-statement, level of significance, simple sampling of attributes, test of significance for large samples, comparison of large samples, Student's t-distribution, Chi—square Distribution

Application: Propellant burning rate, process-capacity problems, drying time problem **Self-Study**—F-test Analysis of variance.

Note – Theorems and properties without proof. Applicable to all the modules. Self-study is not included in SEE

Prescribed Text Books:

Sl.	Book Title	Authors	Edition	Publisher	Year
No.					
1.	Higher Engineering Mathematics	Dr. B. S.	44	Khanna	2016
		Grewal		Publications	
2.	Linear algebra	David c lay	3	Pearson	2002
				education	

Reference Books:

Sl. No	Book Title	Authors	Edition	Publisher	Year
1.	Advanced Engineering Mathematics	E. Kreyszig	10	Wiley	2015
2.	Advanced engineering mathematics	R K Jain and S R K	2	Pearson	2002
		Iyengar		education	
3.	Calculus	Thomas Finney	9	Pearson	2002
				education	

E Books and online course materials:

1. https://www.geneseo.edu/~aguilar/public/assets/courses/233/main_notes.pdf

Online Courses and Video Lectures:

- **1.** https://www.coursera.org/learn/introduction-to-linear-algebra
- 2. https://www.coursera.org/learn/stanford-statistics
- 3. https://onlinecourses.nptel.ac.in/noc21_ma74
- **4.** https://archive.nptel.ac.in/courses/111/106/111106135/

Teaching - Learning - Evaluation Scheme:

Sl. No	Teaching and Learning Method	No. of	No. of	Hours/			
		Hours/	Weeks	Semester			
		Week					
1	Class Room Teaching & Learning	3	14	42			
2	Integrated Lab Component	-	-	-			
3	Student Study Hours – Self Learning	1	14	14			
3	Activity Based Learning (ABL1 & ABL2)	-	-	27			
4	Evaluation of Learning Process	-	-	07			
	Total Learning Hours / Semester						

Proposed Assessment Plan (for 50 marks of CIE):

Tool	Remarks	Marks	
CIE	Three CIEs conducted for 20 marks each	30	
	and reduced to 10 marks		
Activity Details	Details of activities to be conducted	20	
	5) Details of activity 1		
	6) Details of activity 2		
	Total		

Activity Based Learning (27 Hours)

ABL 1 (14 Hours) : Activity 1 details	ABL 1 (14 Hours) : Activity 1 details			
Writing Assignment with Problems	Submission of the final assignment report	14		
on concerned to real world	and evaluation. (Questions of Blooms level			
applications.	L3 and Higher)			
Total		14		
ABL 2 (13 Hours): Activity 2 details				
Problem Solving Assignment	Understand the input data requirements	1		
	Formulate the methodology	4		
	Design the solution	4		

	Solving the problem and submission	4
Total		13

Evaluation of Learning Process (7 Hours)

Type of Evaluation	Hours
Test (1, 2 and 3)	3
Activity (1 and 2)	1
Semester End Exam	3
Total	7

Course Outcomes	Program Outcomes [POs]												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3												
CO2	3	2											
CO3	3												
CO4	3	2											

Course Title	Mathematics-III	Mathematics-III for Information Science Engineering					
Course Code	24MAIS301	24MAIS301 (L-T-P) C (3-1-0) 3					
Exam	3 hours	Hours/Week	03				
SEE	50 marks	Total Hours	42L + 48ABL = 90				

Course Objective: To introduce linear algebra and transform calculus which may be employed as tools in solving engineering application problems.

Course Outcomes (COs): Upon completion of the course, students shall be able to:

Course Outcomes	Mapping to POs	Mapping to PSOs
Utilize the concepts of linear algebra to solve the engineering	1	
application problems and compute the number of linearly		-
independent vectors.		
Examine for the existence of diagonalization of matrix, find the	1,2	
suitable matrix of image transformations. Compute Eigen values		-
and Eigen vectors of a matrix.		
Determine Fourier series of a given function, the orthogonal	1	_
basis, QR factors of Matrices, and solve homogeneous		
differential equations using matrices		
Define mathematical procedures connected with linear algebra,	1,2	_
Fourier series and model the real-life problems/engineering		-
application problems.		
	Utilize the concepts of linear algebra to solve the engineering application problems and compute the number of linearly independent vectors. Examine for the existence of diagonalization of matrix, find the suitable matrix of image transformations. Compute Eigen values and Eigen vectors of a matrix. Determine Fourier series of a given function, the orthogonal basis, QR factors of Matrices, and solve homogeneous differential equations using matrices Define mathematical procedures connected with linear algebra, Fourier series and model the real-life problems/engineering	Utilize the concepts of linear algebra to solve the engineering application problems and compute the number of linearly independent vectors. Examine for the existence of diagonalization of matrix, find the suitable matrix of image transformations. Compute Eigen values and Eigen vectors of a matrix. Determine Fourier series of a given function, the orthogonal basis, QR factors of Matrices, and solve homogeneous differential equations using matrices Define mathematical procedures connected with linear algebra, 1,2 Fourier series and model the real-life problems/engineering application problems.

Course Contents:

Linear Algebra: Importance of Matrices in engineering. Rank of a matrix. Consistency of non-homogeneous and homogeneous system of equations, Solution of the system of linear equations by Gauss elimination method and Gauss – Seidel iterative method. Linearly dependent and independent vectors.

10 Hours

Applications of solution of system of equations to balance the chemical equations.

Module 1

Self-Study--Traffic flow problem, to find the suitable combination of food stuff so as to get the

desired nutrients as prescribed by a dietician.

Module 2

10 Hours

Linear algebra: Orthogonal matrices, Gram Schmidt process, QR-factorization, symmetric matrices and quadratic forms, Matrix method to solve homogeneous differential equations of order 2, degree 1.

Special matrices-matrix of rotation, reflection, translation. To find the matrix of transformation when the image of some points is given.

Self-study: Linear models in business and engineering. Partition matrices, Matrix factorization, Application to computer graphics.

Module 3

10 Hours

Linear Algebra: Eigen values and Eigenvectors, properties, Illustrative examples.

Applications-Stretching of an elastic membrane, to determine the growth of a population model. Role of eigen values, eigenvectors in determining natural frequency, Rayleigh power method to find the highest eigen value.

Diagonalization and powers of 3X3 matrices when Eigen values are already given.

Self-Study-- Stability analysis of differential equations which governs the dynamical systems using the concept of eigen value, eigenvectors. Applications of system of equations, linear transformation in computer science. Application of eigen value eigenvectors in data compression, Signature testing, Face recognition. Google page ranking.

MODULE - 4

12 Hrs.

Fourier Series: Periodic functions and their graphical representation, to find the function for standard graphs, to find Fourier series by change of interval method, To represent the experimental data as a Fourier series using the method - Practical harmonic analysis. application of Fourier series in engineering-To represent the signal (wave form) in terms of Fourier series, Fourier series representation for the excitation described by the wave form, graphs of Fourier series approximating the given function.

Self-Study-- Half range series method. Applications of Fast Fourier transforms, Discrete Fourier transforms in information science engineering.

Note – Theorems and properties without proof. Applicable to all the modules.

Self-study is not included in **SEE**

Prescribed Text Books:

Sl.	Book Title	Authors	Edition	Publisher	Year
No.					
1.	Higher Engineering	Dr. B. S. Grewal	44	Khanna	2016
	Mathematics				2010
2.	Advanced	Erwin	0	Wiley India Pvt.	2004
	Engineering	Kreyszig	8	Ltd	
	Mathematics				
3.	Calculus	Thomas Finney	9	Thomas Finney	2002

Reference Books:

Sl. No	Book Title	Authors	Edition	Publisher	Year
01	Numerical methods	R K. Jain and S. R. K. Jain & S. R. K	O	New age international pvt	2014
02	A textbook of Engineering Mathematics	N.P. Bali and Manish Goyal	6	Laxmi	2010

E Books and online course materials:

1. https://www.geneseo.edu/~aguilar/public/assets/courses/233/main_notes.pdf

Online Courses and Video Lectures:

- **1.** https://www.coursera.org/learn/introduction-to-linear-algebra
- **2.** https://archive.nptel.ac.in/courses/111/106/111106135/

Teaching - Learning - Evaluation Scheme:

Sl. No	Teaching and Learning Method	No. of	No. of	Hours/				
		Hours/	Weeks	Semester				
		Week						
1	Class Room Teaching & Learning	3	14	42				
2	Integrated Lab Component	-	-	-				
3	Student Study Hours – Self Learning	1	14	14				
3	Activity Based Learning (ABL1 & ABL2)	-	-	27				
4	Evaluation of Learning Process	-	-	07				
	Total Learning Hours / Semester							

Proposed Assessment Plan (for 50 marks of CIE):

Tool	Remarks	Marks		
CIE	Three CIEs conducted for 20 marks each	30		
	and reduced to 10 marks			
Activity Details	Details of activities to be conducted	20		
	7) Details of activity 1			
	8) Details of activity 2			
	Total			

Activity Based Learning (27 Hours)

ABL 1 (14 Hours) : Activity 1 details		Hours
Writing Assignment with Problems	Submission of the final assignment report	14
on concerned to real world	and evaluation. (Questions of Blooms level	
applications.	L3 and Higher)	
Total		14
ABL 2 (13 Hours): Activity 2 details		
Problem Solving Assignment	Understand the input data requirements	1
	Formulate the methodology	4
	Design the solution	4

	Solving the problem and submission	4
Total		13

Evaluation of Learning Process (7 Hours)

Type of Evaluation	Hours
Test (1, 2 and 3)	3
Activity (1 and 2)	1
Semester End Exam	3
Total	7

Course Outcomes		Program Outcomes [POs]											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3	-											
CO2	3	2											
CO3	3	1											
CO4	3	2											

Course Title Mathematics-III for Electrical and Electronics					
	Engineering				
Course Code	24MAEE301	(L-T-P) C	(3-1-0) 3		
Exam	3 hours	Hours/Week	03		
SEE	50 marks	Total Hours	42L + 48ABL = 90		

Course Objective: To introduce linear algebra and transform calculus which may be employed as tools in solving engineering application problems.

Course Outcomes (COs): Upon completion of the course, students shall be able to:

No.	Course Outcomes	Mapping to POs	Mapping to PSOs
1.	Analyze the engineering problems using concepts of linear algebra.	PO1	-
2.	Apply the Fourier Transform to interpret continuous and discrete-time signals to solve engineering problems.	PO1, PO2	-
3.	Represent the function/experimental data in terms of a Fourier series and to solve the problems.	PO1	-
4.	Solve Z - transforms of the given function and gain the capability to find solutions of difference equations.	PO1, PO2	-

Course Contents:

Linear Algebra: Importance of Matrices in engineering. Rank of a matrix. Consistency of non-homogeneous and homogeneous system of equations, Solution of the system of linear equations by Gauss elimination method and Gauss – Seidel iterative method.

10 Hours

Module 1

Eigen values and Eigenvectors, properties, Illustrative examples. Stability analysis of differential equations which governs the dynamical systems using the concept of Eigen value & eigenvectors.

Applications of solution of system of equations: circuit flow problem.

Self-Study- linear transformation.

Module 2 10 Hours

Fourier Transform: Introduction, Fourier Integral, Infinite Fourier transform, Properties of Fourier transform (Linearity, Change of Scale, Shifting), Evaluation of Complex Fourier transform, Fourier sine & Fourier cosine transforms.

Inverse Fourier Transforms Inverse complex Fourier transform, Inverse sine & Cosine transforms, Properties.

Application: Applications of Fourier transforms in Electrical & Electronics engineering.

Self-Study- Fast Fourier transforms.

Module 3 10 Hours

Fourier Series: Introduction, Periodic function, Periodic functions and their graphical representation, Trigonometric series, Fourier series of Odd & Even functions, to find Fourier series by change of interval method, to represent the experimental data as a Fourier series using the method - Practical harmonic analysis.

Application of Fourier series in engineering-To represent the signal (wave form) in terms of Fourier series, Fourier series representation for the excitation described by the wave form, graphs of Fourier series approximating the given function.

Self-Study- Half range series method.

MODULE - 4 12 Hrs.

Z-Transforms: Introduction to Z-transforms, Definition and property, Z-transforms of some standard functions, Standard forms, properties, Linearity property, Damping rule, Shifting rule, Initial value theorem, Final value theorem. – Problems.

Application -Application to deflection of a loaded string.

Self-Study- Inverse Z transforms, Solution of Difference equations using Z Transforms.

Note—Theorems and properties without proof. Applicable to all the modules. Self-study is not included in SEE.

Prescribed Text Books:

Sl.	Book Title	Authors	Edition	Publisher	Year
No.					
1.	Linear Algebra and its	David C.	5	Pearson	2015
	Applications	Lay, Steven	ISBN-	Education Ltd	
		R. Lay and	10:9350517698		
		J.J. Mc			
		Donald			

Reference Books:

Sl	. No	Book Title	Authors	Edition	Publisher	Year
	1.	Advanced Engineering	E. Kreyszig	10	Wiley	2015
		Mathematics				
	2.	Linear Algebra and its	Gilbert Strang	4	Cenage	2014
		Applications			publications	

E Books and online course materials:

1. https://www.geneseo.edu/~aguilar/public/assets/courses/233/main_notes.pdf

Online Courses and Video Lectures:

- 1. https://www.coursera.org/learn/introduction-to-linear-algebra
- 2. https://www.coursera.org/specializations/linear-algebra-elementary-to-advanced
- **3.** https://archive.nptel.ac.in/courses/111/106/111106135/

Teaching - Learning - Evaluation Scheme:

Sl. No	Teaching and Learning Method	No. of	No. of	Hours/
		Hours/	Weeks	Semester

		Week				
1	Class Room Teaching & Learning	3	14	42		
2	Integrated Lab Component	-	-	-		
3	Student Study Hours – Self Learning	1	14	14		
3	Activity Based Learning (ABL1 & ABL2)	-	-	27		
4	Evaluation of Learning Process	-	-	07		
	Total Learning Hours / Semester					

Proposed Assessment Plan (for 50 marks of CIE):

Tool	Remarks	Marks
CIE	CIE Three CIEs conducted for 20 marks each	
	and reduced to 10 marks	
Activity Details	Details of activities to be conducted	20
	9) Details of activity 1	
	10) Details of activity 2	
	50	

Activity Based Learning (27 Hours)

ABL 1 (14 Hours): Activity 1 details				
Writing Assignment with Problems	Submission of the final assignment report	14		
on concerned to real world	and evaluation. (Questions of Blooms level			
applications.	L3 and Higher)			
Total		14		
ABL 2 (13 Hours): Activity 2 details				
Problem Solving Assignment	Understand the input data requirements	1		
	Formulate the methodology	4		
	Design the solution	4		
	Solving the problem and submission	4		

Total	13

Evaluation of Learning Process (7 Hours)

Type of Evaluation	Hours
Test (1, 2 and 3)	3
Activity (1 and 2)	1
Semester End Exam	3
Total	7

Course Outcomes	Program Outcomes [POs]												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3	-											
CO2	3	2											
CO3	3	-											
CO4	3	2											

Course Title	Bridge Course for Diploma Students					
	BRIDGE COURSE MATHEMATICS - I					
	(Common to all Branches of Engineering)					
		(Audit Course)				
Course Code	24BCM301	L-T-P	(3-0-0)			
Exam	3 Hrs.	Hours/Week	3			
CIE	50 Marks	Total Hours	42			

Course Objective: Students will be able to use appropriate data structures for solving problems.

Course Outcomes: At the end of course, student will be able to:

Course Outcomes	Mappin	Mappin
	g to	g to
	PO's	PSO's
Solve simple problems on determinants, matrix multiplication,	1	-
partial differentiation, and integration.		
Compute the roots of transcendental equations and interpolate when	1	-
the experimental data is given.		
Expand the given function in terms of Taylor/ Macluarin's series	1	-
	Solve simple problems on determinants, matrix multiplication, partial differentiation, and integration. Compute the roots of transcendental equations and interpolate when the experimental data is given.	Solve simple problems on determinants, matrix multiplication, partial differentiation, and integration. Compute the roots of transcendental equations and interpolate when the experimental data is given.

MODULE-1 10 Hrs.

Basic Formulas: Partial fractions. Matrices and determinants: matrix multiplication, evaluation of determinants, finding inverse.

Differentiation-I: Review of limit and Continuity, differentiation- Basic formulas, Sum rule, product rule, quotient rule, chain rule and problems.

Differentiation-II: Taylor's series, and Macluarin's series of simple functions for single variable, simple problems.

MODULE-2	10 Hrs.
	1

Partial Differentiation: Definition, Illustrative examples on Partial differentiation, Total differentiation, chain rule, Differentiation of composite and implicit functions, Jacobians, illustrative examples and problems, simple problems.

MODULE-3 10 Hrs.

Integration: Basic formulas, Illustrative examples, evaluation of definite integrals, Integration by parts, Bernoulli's rule of Integration.

Integral calculus: Reduction formula for functions $sin^n x$, $cos^n x$ (without proof), Simple problems, Double & triple integration, simple problems with standard limits.

MODULE-4 12 Hrs.

Numerical Methods - Numerical Solution of algebraic & transcendental equations by Bisection method, Newton Raphson method, Regular Falsi method.

Numerical Interpolation-Definition of forward, backward differences, Newton's forward and backward interpolation formulae, Lagrange's interpolation formula.

Prescribed Text Books:

Sl.No	BookTitle	Authors	Edition	Publisher	Year
01	Higher Engineering	Dr.B.S.Grewal	40 th edition	Khanna Publications	2007
	Mathematics				
02	Advanced Engineering	Erwin Kreyszig	8 th edition	TataMcGrawHill,	2007
	Mathematics			Publications	

Reference Books:

Sl. No	Book Title	Authors	Edition	Publisher	Year
01	Calculus	Thomas Finney	9 th edition	Pearson education	2002

02	A text book of	N.P. Baliand		Laxmi	2010
	Engineering Mathematics	Manish Goyal	Reprint	Publications	

Teaching - Learning - Evaluation Scheme:

Sl. No	Teaching and Learning Method	No. of	No. of	Hours/
		Hours/ Week	Weeks	Semester
1	Class Room Teaching & Learning	3	12	36
2	Integrated Lab Component	0	0	00
3	Student Study Hours - Self Learning	2	1	2
3	Activity Based Learning (ABL1 & ABL2)	-	-	-
4	Evaluation of Learning Process	-	-	04
Total Lear	ning Hours/Semester			42

Proposed Assessment Plan (for 50marks of CIE):

Tool	Remarks	Marks
CIE	Two CIEs conducted for 50 marks each	50
	and reduced to 50 marks	
	50	

Evaluation of Learning Process (4Hours)

Type of Evaluation	Hours
Test (1, 2 and 3)	3
Activity (1 and 2)	1
Semester End Exam	3
Total	7

Course	Program Outcomes												
Outcome													
S													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PSO	PSO
										0	1	1	2
CO1	1												
CO2													
	1												
CO3	1												