MALNAD COLLEGE OF ENGINEERING, HASSAN

(An Autonomous Institution Affiliated to VTU, Belagavi)

Autonomous Programmes

BACHELOR of ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING

SYLLABUS V AND VI SEMESTERS (THIRD YEAR)

(2022-23 Admitted Batch)

Academic Year 2024-25

Vision of The Department:

To emerge as department of high repute in Mechanical Engineering and allied fields through effective teaching, learning process and research activities, operating with a sense of professional and social responsibility.

Mission of The Department:

- 1. Empower students to scale high in their professional career through upskilling.
- 2. Effective association with higher institutes of learning, industry and research laboratories with emphasis on multi-disciplinary approach.
- 3. Encourage students to participate in sustainable projects.
- 4. Inculcate professional and ethical norms in all activities.

Program Educational Objectives:

PEO 1: Graduates will be able to apply engineering principles to develop products, processes or knowledge to solve mechanical and associated engineering problems for successful careers in mechanical engineering/higher education/research.

PEO 2: Graduates will acquire leadership qualities with strong communication skills along with professional and ethical values.

PEO 3: Graduates will be able to become entrepreneur / innovators to design and develop manufacturing systems and services to address social, technical and business challenges.

PEO 4: Graduates will be lifelong learners.

	PROGRAM OUTCOMES [POs]:
Mecha	nical Engineering students shall be able to,
PO 1:	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO2 :	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of
	mathematics, natural sciences, and engineering sciences.
PO3 :	Design/development of solutions: Design solutions for complex engineering problems
	and design system components or processes that meet the specified needs with
	appropriate consideration for the public health and safety, and the cultural, societal, and
	environmental considerations.
PO4 :	Conduct investigations of complex problems: Use research-based knowledge and
	research methods including design of experiments, analysis and interpretation of data, and
	synthesis of the information to provide valid conclusions.
PO5 :	Modern tool usage: Create, select, and apply appropriate techniques, resources, and
	modern engineering and IT tools including prediction and modelling to complex
	engineering activities with an understanding of the limitations.
PO 6:	The engineer and society: Apply reasoning informed by the contextual knowledge to
	assess societal, health, safety, legal and cultural issues and the consequent responsibilities
	relevant to the professional engineering practice.
PO7 :	Environment and sustainability: Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and
DOG	need for sustainable development.
PO8 :	Ethics : Apply ethical principles and commit to professional ethics and responsibilities
	and norms of the engineering practice.
PO9:	Individual and teamwork: Function effectively as an individual, and as a member or
	leader in diverse teams, and in multidisciplinary settings.
PO10:	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and
	write effective reports and design documentation, make effective presentations, and give
	and receive clear instructions.
PO11:	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member
	and leader in a team, to manage projects and in multidisciplinary environments.
PO12:	Life-long learning: Recognize the need for and have the preparation and ability to
	engage in independent and life-long learning in the broadest context of technological
	change.

PROC	GRAM SPECIFIC OUTCOMES [PSOs]
PSO1:	Apply the knowledge of design engineering skills to manufacture an engineering mechanical system.
PSO2:	Model, simulate, analyze and optimize mechanical systems / processes through application of software.

Scheme of Evaluation (Theory Courses)

	Portions for CIE	Mode of Evaluation	Weightage in Marks
CIE - 1		Descriptive Test	10
CIE - 2	Syllabus to be decided by the course coordinators such that all the COs shall be covered.		10
CIE - 3		Descriptive Test	10
Activity	Minimum of two activities to be conducted	Assignment / Case study/Practical/ Working model /Quiz	20
		Total	50

Exan	nination	Maximum marks	Minimum marks to be scored	Minimum Average marks to qualify
CIE	Tests	30	12 (> = 40%)	
	Activity	20	08 (> = 40%)	40 (> = 40%)
SEE		50	17.5 (> = 35%)	

Scheme of Evaluation (Laboratory Courses)

Evaluation Type	Evaluation modules	Marks
	Conduction of experiments	10
Continuous internal Evaluation	Observation and tabulation of results	10
(CIE) in every lab session by the Course coordinator	Record writing	20
	Viva voce/Quiz	10
CIE	50	
SEE		50

Note: The marks distribution to be made based on the rubrics for a particular laboratory course.

MALNAD COLLEGE OF ENGINEERING, HASSAN B.E. in Mechanical Engineering Scheme of Teaching and Examinations2024 Outcome Based Education (OBE) and Choice Based Credit System (CBCS) (Effective from the academic year 2024-25)

					Teachi	ng Hou	rs/Wee	k	
SI NO			J .		Irse Title Lecture			Credits	Duration in hours
				L	Τ	P	С	D	
1	HSMS	22ME501	Industrial Management & Entrepreneurship	3	0	0	3	3	
2	PCC	22ME502	Fluid Mechanics & Fluid Machines	4	1	0	4	5	
3	PCC	22ME503	Machine Design	4	1	0	4	4	
4	PCCL	22ME504	Fluid Mechanics and Fluid Machines Lab	0	0	2	1	3	
5	PCCL	22ME505	CNC Programming and 3-D Printing lab	0	0	2	1	3	
6	PEC	22ME55X	Professional Elective - I	3	0	0	3	3	
7	PROJ	22ME506	Mini Project	0	0	4	2	3	
8	AEC	22RIP	Research Methodology and IPR	3	0	0	3	3	
9	MC	22EVS Environmental Studies		0	0	2	1	2	
			Total	17	2	10	22	26	

V Semester B.E. Mechanical Engineering

Professional Elective-I Course							
22ME551	Mechatronics						
22ME552	Project Management						
22ME553	Quality Control and Management						
22ME554	Principles of CAD/CAM						

INDUSTRIAL MANAGEMENT AND ENTREPRENEURSHIP

Exam Hours: 3Hours / Week: 04SEE: 50 MarksTotal hours: 40

Course Objective: To develop proficiency for making rational decisions regarding problems likely to be encountered in professional practice, by applying management concepts and entrepreneurial skills.

Course Outcomes (COs) {with mapping shown against the Program Outcomes (POs)}

Upon successful completion of this course, the student shall be able to:

#	Course Outcomes	POs	PSOs
1	Explain the basicconcepts of management and entrepreneurship	1,11	-
2	apply the conceptual knowledge of management and entrepreneurship to make rational decisions in professional practice	1,11	-
3	utilize the initiatives by government and private institutions to boost entrepreneurial spirit	1,11	-

Course Contents:

22ME501

Module –1	10 Hrs.
Management: Introduction, Management Functions, levels of management, Roles of a	Manager,
Managerial Skills, Managerial Effectiveness.	-

Planning: Nature, importance and purpose of planning process, types of plans (meaning only), steps in planning & planning premises.

Module –2

Organizing: Characteristics of an Organisation, types of organization, Process of Organizing, Span of Management, Departmentalization, Committees, Authority, Responsibility, Centralization and Decentralization. Staffing: Recruitment, Selection.

Directing: Requirements of Effective Direction, Motivation: Maslow's Need-Hierarchy Theory, Herzberg's Two-Factor Theory, Leadership styles. Coordination: meaning, importance and techniques. **Controlling:** Meaning, steps in controlling, essentials of a sound control system.

Module- 310 Hrs.Entrepreneurship: Introduction, steps in entrepreneurship, role of entrepreneurs in economic
development, entrepreneurship in India, corporate entrepreneurship, entrepreneurial competencies,
capacity building for entrepreneurs, myths about entrepreneurship, environmental factors affecting
entrepreneurial growth, creating a favorable environment for entrepreneurship.

Module – 4

10 Hrs.

10 Hrs.

MSME: Role and importance, concepts and definitions, government policy initiatives for MSME, schemes for MSME, role of clusters in promoting MSME, problems in MSME sector, impact of liberalization, privatization and globalization on MSME sector, effect of WTO/GATT. Institutions supporting business enterprises: Central, state level and other institutions.

Self-Study:

- 1. Prepare and present a report on business enterprises.
- 2. Case study on
 - Successful entrepreneurs.
 - User innovation and entrepreneurship from rural India.
 - Women entrepreneurship and the opportunity to promote India's development.
 - Information Technology and Entrepreneurship.

LTPC: 3-0-0-3

- Entrepreneurship and Economic Development in a Developing Country.
- Entrepreneurship and Innovation & Business creation and management.
- Social Enterprise.
- 3. Prepare and present a report on how to utilize the resources available effectively through ERP
- 4. Prepare and present a report on how to make use of IPRs and institutional support in entrepreneurship

TEXTBOOKS

- 1. Principles of Management, P C Tripathi, P N Reddy& Ashish Bajpai, Tata McGraw Hill, Seventh Edition, 2021. ISBN: 9789354600630
- 2. Entrepreneurship Development and Small Business Enterprises, Poornima M.Charantimath, Pearson, Third Edition, 2021

REFERENCE:

https://www.msme.gov.in/

COURSE ATRICULATION MATRIX

Course Outcomes		Program Outcomes [POs]												
COs	PO1	P02	PO3	PO4	PO5	PO6	P07	PO8	P09	P010	P011	P012	PS01	PSO2
CO1	3										2			
CO2	3										2			
CO3	3										2			

FLUID MECHANICS AND FLUID MACHINES

22ME502

Exam Hours: 3

SEE: 50 Marks

LTPC: 4-1-0-4 Hours / Week: 05 Total hours: 52

Course objectives:

To impart the students with fundamental knowledge of fluid properties, concept of fluid flow &basics principles of energy conversion in turbomachines

Course Outcomes (COs) { with mapping shown against the Program Outcomes (POs) }

Upon completion of the course, students shall be able to:

COs	Statement	POs	PSOs
1.	apply the fundamental laws of fluid statics and kinematics to various	1,2, 3	-
	hydraulic systems		
2.	apply fluid flow governing equations to design free surface & pipe flows.	1,2,3	-
3.	analyse energy transfer, stage parameters and performance characteristics of various turbomachines.	1,2,3	-
4.	analyse energy transfer and perform the preliminary design of steam turbines, hydraulic turbines and centrifugal pumps.	1,2,3	-

Module-I	13 Hrs.						
Fluid statics: Definition of fluid, Fluid properties (No derivation & numerical problems),							
Classification of fluids, Pascal's Law and Hydrostatic Law, Pressure and its vari	iation in a static						
Fluid, Measurement of static fluid pressure: Hydrostatic forces on Plane -Inclin	ned and Curved						
surfaces, Buoyancy, Condition of Equilibrium for Submerged and Floating Bo	odies, Centre of						
Buoyancy, Metacenter-Determination of Metacentric Height (Analytical met	hod)-Numerical						
Problems.							

Fluid kinematics: Description of fluid motion – Lagrangian and Eulerian approach, Types of flows, Continuity equation, Continuity equation in three Dimension, velocity and acceleration, Streamlines, path lines and streak lines, Stream function and velocity potential function - Numerical Problems.

Self-Learning Component: Manometers, Pressure at a point, Relation between pressures, Reynolds transport theorem.

Module-II	13 Hrs.					
Fluid dynamics: Euler and Bernoulli's equations, Practical application of Berno	Fluid dynamics: Euler and Bernoulli's equations, Practical application of Bernoulli's Equation–					
orifice meter, Venturi meter, Navier–Stokes Equations (No derivation) -Numerical Problems.						
Flow through pipes: Measurement in pipe flow- Major loss, Darcy-Weisbach equation, Minor						
losses (Numerical problem), Hagen Poiseuille equation-laminar flow through c	losses (Numerical problem), Hagen Poiseuille equation-laminar flow through circular pipe and					
flow between two parallel stationary plates- (No Numerical Problems).						
Self-Learning Component: Introduction to flow through pipes and channels,	Types of flows,					
Reynolds experiment.						
Module-III 12 Hrs.						
Basics of Turbomachines: Definition of turbo machine, parts of turbo machines, Comparison						
with positive displacement machines, Classification, Dimensionless parameter	eters and their					

with positive displacement machines, Classification, Dimensionless parameters and their significance (No numerical questions on dimensional analysis), Unit and specific quantities, Euler's turbine equation, Alternate form of Euler's turbine equation, Velocity triangles for different values of degree of reaction, Components of energy transfer, Degree of Reaction, utilization factor, Relation between degree of reaction and Utilization factor, Numerical problems.

Steam Turbine: Classification, Single stage impulse turbine, Condition for maximum blade

efficiency, Stage efficiency, Nozzle efficiency, Need and methods of compounding, Numerical problems. Self-Learning Component: Derived quantities

	Module-IV		12 Hrs.			
Efficiencies, F Methods of pre Hydraulic tur and Propeller characteristics,	Dump: Centrifugal pumps, Wo Priming, Minimum starting speed evention, Pump characteristics, Nu bines: Classification of hydraulic turbines, Velocity triangles, Spe Selection of turbines, (Numerical Component: Introduction, Unit q	l, Performance of multistage merical Problems. turbines, Pelton wheel - France ecific speed, Theory of draft Problems only on Pelton wheel	pumps, Cavitation, cis turbine - Kaplan tube, Performance			
 Streeten 1999, <i>I</i>. An Intu Manoha <i>ISBN</i> 13 	V.L., Benjamin Wylie, "Fluid M SBN: 0070622426 9780070622425 roduction to Energy Conversion, ar Prasad, New Age International 3: 9788122431896.	5. Volume III, Turbo machinery	v, V. Kadambi and			
REFERENCE			11 T / 1 / /			
	W. Fox, Alan T. McDonald, Phi Iechanics, 9th Edition, Wiley Publ	1	iell, Introduction to			
 Dr. R. Laxmil Princip 002409 Fluid M 	K. Bansal, A Textbook of Fluid Publication, 2012, New Delhi, <i>ISB</i> als of Turbo machines, D. G. She 6601 / <i>ISBN</i> 13: 9780024096609. <i>M</i> echanics & Thermodynamics o 781856177931, 9780080962597	Mechanics and Hydraulic Mae N-10: 8131808157; <i>ISBN</i> -13: 9 pherd, The Macmillan Compar	78-8131808153. ay (1964), <i>ISBN</i> 10:			
Tutorial Class	ses					
	erical problems on Fluid statics					
	erical problems on Fluid statics					
	erical problems on Fluid Kinemati	ics				
	erical problems on Fluid Dynamic					
	erical problems on Flow through p					
	erical problems on Flow through p					
	erical problems on Turbo machine					
	erical problems on Turbo machine					
	erical problems on Steam turbine	<u> </u>				
	erical problems on Steam turbine					
	erical problems on Centrifugal put	mp				
	erical problems on Centrifugal put					
	erical problems on Hydraulic turb	•				
	erical problems on Hydraulic turb					
	aluation (Theory Courses)					
			XX7 * 1 /			
	Portions for CIE	Mode of Evaluation	Weightage in Marks			
CIE - 1 Descriptive Test 10						
CIE - 2	course coordinators such that the entire COs shall be	Descriptive Test	10			
CIE - 3	covered.	Descriptive Test	10			

A	Activity Minimum of two activities to be conducted Working model								
		SEE		50					
		Total	l	100					
COURS	SE ATR	RICULATION MATRIX							

Course Outcomes		Program Outcomes [POs]												
COs	PO1	P02	PO3	PO4	PO5	PO6	P07	PO8	P09	PO10	PO11	P012	PSO1	PSO2
CO1	3	3	1											
CO2	3	3	1											
CO3	3	3	3											
CO4	3	3	3											

22ME503

Exam Hours:3

SEE: 50 Marks

Course objectives:

To design simple machine elements subjected to static and dynamic loads using the concepts of stress analysis and theories of failure.

Upon completion of the course, students shall be able to:

COs	Statement	Pos	PSOs
1.	apply basic stress-strain analysis and failure theories to design machine elements subjected to Static and Dynamic loads	1,2,3,12	1
2.	design of mechanical elements such as curved beams and fasteners	2,3,5,9,12	2
3.	design of different types of gear drives for dynamic and wear considerations using standard practices	2,3,5,9,12	2

COURSE CONTENTS:

Module – 1	
Introduction : Mechanical Engineering Design, Phases of design Process, Design Considerations, Engineering Materials and their mechanical properties, Review of definitions - normal, shear, Biaxial and Triaxial Stresses, Principal Stresses. Design for Static Strength: Theories of failure – Maximum Normal stress Theory, Maximum Shear stress Theory, Distortion Energy Theory; Brittle and ductile failure. Stress concentration, Determination of Stress concentration factor.	13 Hrs.
Design for dynamic loads : Impact strength: Introduction, Impact stress due to Axial, Bending and Torsional loads, Impact factor.	
Module -2	
Fatigue loads : Introduction, Fatigue failure, Definition of Low Cycle Fatigue and High Cycle Fatigue, S-N diagram, Endurance Limit, Correction factors for Load, Size and surface finish, Fatigue Stress concentration factor, Notch sensitivity, Factors affecting Fatigue; Goodman and Soder-berg relationships. Problems on members subjected to fatigue due to Axial, Bending, Torsion, and combined loads. Curved Beams : Winkler - Bach equation, Stresses in curved beams of standard cross sections used in crane hook, Punching presses and clamps.	13 Hrs.
Module – 3	
Design of Gears - Spur and Helical Gears: Definitions, stresses in gear tooth, Lewis's equation and form factor, design for strength, dynamic and wear loads. Bevel Gears: Definitions, formative number of teeth, stresses in gear tooth, design for strength, dynamic and wear loads. Design of Worm Gears: Definitions, design based on strength, dynamic, wear loads and efficiency of worm gear drives.	13 Hrs.
Module – 4	
Threaded Fasteners : Stresses in Threaded Fasteners. Effect of Initial Tension, Design of Threaded Fasteners under Static, Dynamic and Impact loads. Eccentrically loaded bolted joints, Riveted Joints : Failures of Riveted joints, Design of Boiler joints as per IBR, eccentrically loaded riveted joints, Welded Joints – Types, Strength of Butt and Fillet welds, eccentrically loaded welded joints.	13 Hrs.

LTPC: 4-1-0-4 Hours / Week :05 **Total hours: 52**

MACHINE DESIGN

Self-study component

- Design of components subjected to eccentric loads
- Cumulative fatigue damage, Miner's rule. (https://www.sciencedirect.com/science/article/abs/pii/S0142112397000819)
- Design of splined shafts.
- Keys: Types of Keys, Selection of square keys
- Design of Knuckle Joint, cotter joint, Rigid and Flexible couplings: Flange Coupling, Bush and pin type Coupling
- Influence of Heat Affected Zone (HAZ) in welded joint
- Differential and Compound screws, Recirculating ball screw.

https://freevideolectures.com/course/2363/design-of-machine-elements-i

Tutorials:

- 1. Numerical on members subjected to static load
- 2. Numerical with respect to biaxial stresses acting on an object
- 3. Numerical on Theories of failure
- 4. Numerical on member subjected to axial impact load
- 5. Numerical on member subjected to bending impact load
- 6. Numerical on member subjected to repeated fatigue load
- 7. Numerical on member subjected to completely reversible fatigue load
- 8. Numerical on spur gears
- **9.** Numerical on helical gears
- **10.** Numerical on bevel gears
- **11.** Numerical on worm gears
- **12.** Numerical with respect to design of threaded fasteners
- **13.** Numerical with respect to design of rivets
- 14. Numerical with respect to design of welded joints

TEXTBOOK:

1. Maleev & Hartman's, *Machine Design in SI units*, 6th Edition, C B S Publications, Delhi, 2015. ISBN:9788123926322

REFERENCE BOOKS:

- 1. M.F. Spotts, T.E. Shoup, L.E. Hornberger, S. R. Jayaram & C. V. Venkatesh, *Design of Machine Elements*, Pearson Education, 8th Edition, 2006. ISBN 9788177584219
- 2. Joseph Edward Shigley, *Mechanical Engineering Design*, Mc. Graw Hill, 8th Edition, 2008. ISBN:9780073529288.
- 3. V. B. Bhandari, *Design of Machine Elements*, TMH, 3rd Edition, 2007. ISBN:9780070681748

DESIGN DATA HANDBOOKS:

1. K. Mahadevan and Balaveera Reddy, Design *Data Handbook*, C B S Publications, Delhi. 4th edition, 2013. ISBN: 9788123923154.

COURSE ATRICULATION MATRIX

Course Out comes		Program Outcomes [POs]												
COs	P01	PO2	PO3	P04	PO5	PO6	PO7	PO8	PO9	PO10	P011	P012	PSO1	PSO2
CO1	3	2	1	-	-	-	-	-	-	-	-	1	2	-
CO2	-	2	1	-	1	-	-	-	1	-	-	1	-	2
CO3	-	2	1	-	1	-	-	-	1	-	-	1	-	2

FLUID MECHANICS AND FLUID MACHINES LABORATORY

22ME504

Exam Hours: 3

SEE: 50 Marks

LTPC: 0-0-2-1 Hours / Week: 02 Total hours: 26

Prerequisites: Fluid Mechanics and Fluid Machines

Course objective: To provide students with the necessary skills to conduct experiments, collect data, perform analysis and interpret results to draw valid conclusions through standard test procedures to calibrate the fluid flow measuring devices and to evaluate performance of hydraulic machines.

Course Outcomes (COs) {with mapping shown against the Program Outcomes (POs)}

Upon completion of the course, students shall be able to:

#	Course Outcomes	Mapping to POs	Mapping to PSOs
1.	demonstrate& evaluate the losses through the pipes and the use of flow measuring devices.	1,2,9,10	-
2.	demonstrate the impulse-momentum principle to evaluate the hydrodynamic force exerted on a body by impact of jet.	1,2,9,10	-
3.	evaluate the performance parameters of hydraulic turbines and pumps.	1,2,3,9,10	-

Course Contents:

- 1. Determination of coefficient of friction of flow in a pipe.
- 2. Determination of minor losses in flow through pipes.
- 3. Experiments on flow measuring devices
 - a) Orifice plate
 - b) Venturi-meter
- 4. Flow through notches
- 5. Impact of jets on vanes
- 6. Performance tests on Turbines
 - a) Pelton Wheel
 - b) Francis Turbine
 - c) Kaplan turbine
- 7. Performance tests on pumps
 - a) Centrifugal pump
 - b) Reciprocating Pump.

SEE Scheme:

1.	One experiment from either 1 to 5		15 Marks
2.	Any one performance test either from6 or 7		25 Marks
3.	Viva Voce		10 Marks
		Total:	50 Marks

COURSE ATRICULATION MATRIX

Course Outcomes		Program Outcomes [POs]												
COs	PO1	P02	PO3	PO4	PO5	PO6	PO7	PO8	909	PO10	P011	P012	PSO1	PSO2
CO1	3	3							2	2				
CO2	3	3							2	2				
CO3	3	3	2						2	2				

CNC PROGRAMMING AND 3-DPRINTING LAB

22ME505

Exam Hours: 3

SEE: 50 Marks

LTPC: 0-0-2-1 Hours / Week: 02 Total hours: 26

Course objectives:

- ToexposethestudentstothetechniquesofCNCprogrammingandcuttingtoolpathgenerati onthroughCNCsimulationsoftwareby using-Codes and M-codes.
- To educate the students on the usage of CAM packages.
- To impart skillsontheusageof3DPrintingTechnology

Course Outcomes (COs) {with mapping shown against the Program Outcomes (POs)}

Upon completion of the course, students shall be able to:

#	Course Outcomes	Mapping to POs	Mapping to PSOs
1	explain the basic concepts of computer numerical control & 3D- printing technology.	1,5,9,10	-
3	simulate CNC machining operations using CAM packages	1,5,9,10	2
4	evaluate the performance parameters of hydraulic turbines and pumps.	1,5,9,10	2

The following topics should be covered before starting the experiments:

Fundamentals of Machining, Fundamentals of Numerical Control, Elements of CNC System, Design Considerations of CNC Machine Tools, CNC Tooling, Automatic Tool Changers, Tool Magazines, Work Holding, Incremental and Absolute Systems of Programming, Gcodes& M-codes, Machine Control Panel, Work Offset.

Sl. No.	Experiments
1.	Simulation of work offset on CNC simulator.
2.	Simulation of part program to perform Facing operation using Sinu Train.
3.	Simulation of part program to perform Facing & Turning operation using Sinu
	Train.
4.	Simulation of part program to perform Step Turning operation using Sinu
	Train.
5.	Simulation of part program to perform Taper Turning & Fillet operation using
	Sinu Train.
6.	Simulation of part program to perform Thread Cutting & Grooving operation
	using Sinu Train.
7.	Simulation of part program to perform milling operation using CNC simulator.
8.	Generation and simulation of part programs to perform milling operation using
	CAM packages.
9.	Simple 3 DPrinting Model: Creating Simple 3 Dmodel in CAD software and printing the model of the second structure of the sec
	elusing3DPrinter.
10.	AssemblyModel-1: Creating a 3D CAD model of NUT and Bolt print the model
	using 3D Printer and Check the assembly.

11.	AssemblyModel-2: Creating a 3D CAD assembly model containing four or more part (example screw jack, Plumber block etc.) and print the model using 3D Printer and Check the assembly.							
	Demonstration Experiments (For CIE)							
1.	Model-1: Preparing a model using CNC turning center (CNC Lathe) as per given dimensions by performing facing, turning, step turning and taper turning operations							
2.	Model-2: Preparing a model using CNC machining center (CNC Milling Machine) as per given dimensions by performing pocket milling or face milling operations							

Scheme of Evaluation

Evaluation Type	Evaluation modules	Marks					
Continuous internal Evaluation	Conduction of experiments from 1 to 11	30					
(CIE) in every lab session by the	Demonstration Experiments	10					
Course coordinator	Record writing	10					
CIE							
Sem	ester End Examination						
1. One experiment from 3 to 8		20					
2. One experiment from 9 to 1	1	20					
3. Viva-Voce	3. Viva-Voce						
	SEE	50					

COURSE ATRICULATION MATRIX

Course Outcomes		Program Outcomes [POs]												
COs	PO1	P02	PO3	P04	PO5	PO6	PO7	PO8	P09	PO10	P011	P012	PSO1	PSO2
CO1	3													
CO2	2				3									3
CO3	2				3									3

22ME551 Exam Hours: 3 SEE: 50 Marks LTPC: 3-0-0-3 Hours / Week: 03 Total hours: 40

Course Objectives: To impart knowledge of Microprocessors, Microcontrollers, PLCs and their role in Mechatronics systems. To introduce the students, the fundamentals of interdisciplinary engineering components and their integration in Mechatronics systems design approach.

Course Outcomes (COs) {with mapping shown against the Program Outcomes (POs)}

Upon completion of the course, students shall be able to:

#	Course Outcomes	Mapping to POs	Mapping to PSOs
1.	Interpret the basic principles of Microprocessor, Microcontroller and their applications	1, 2	-
2.	apply the concepts of automatic control system for Engineering applications using digital controls	1, 3	-
3.	design digitally controlled Mechatronics and PLC system for industrial process automation	3, 5	-

Course Contents:

Module-1	10 Hrs.							
Introduction to Microprocessors: Evolution of Microprocessor, organi	zation of							
Microprocessor based system. Memory - Flip-Flop as a storage element. 8085 Microprocessor								
Instruction set Instruction classification. Architecture of 8085 Microprocessor. Instruction								
fetches operation. Microprocessor communication and bus timings.								
Microcontrollers-Architecture of 8051 Microcontroller, selection factors. Con	-							
Microprocessor and Microcontroller. Microchip Microcontrollers. Interfacing and A								
Module-2	10 Hrs.							
Signal conditioning and Actuation systems – Analog and Digital signals – A	e							
Digital Conversion (ADC), Digital to Analogue (DAC), Data acquisition systems.	Actuators:							
Encoders, D. C. Motors, A. C. Motors, Stepper motors.								
Mechatronics: Introduction, Role of Various Engineering disciplines in Mechatr	onics, The							
Design process, Systems, Measurement systems, Control systems, Microproces	ssor based							
controllers.								
Module-3	10 Hrs.							
Introduction to PLC: Introduction, Basic PLC structure, Input/output processing,	Introduction							
to Programming of PLCs, General PLC Programming procedures, for process c								
Timer and Counter functions, Simple Ladder Logic Programs using above PLC	C functional							
elements for automatic industrial process controls								
Module-4	10 Hrs.							
Design of Mechatronics Systems: Mechatronics system Case studies: Design So	lutions for							
Autotronics; Car engine Management systems, Windscreen Wiper Mechanism	m Engine,							
Temperature Measurement, Antilock or Antiskid Device, Air Bag Deployment Syste	em etc.							
Avionics; Aircraft Engine Control, Cockpit Instrumentation etc. Automatic Came	ra System,							
Pick and place robot, Engine management system etc.,								
MEMS and Microsystems, overview of Micro manufacturing, Introduction t	o Artificial							
Intelligence.								

Self-learning components:

- Sensor Networks in Mechatronics
- Mechatronics in Biomedical Engineering
- Autonomous Robots using Mechatronics
- Mechatronics in Agriculture: Opportunities and Challenges
- Networking PLCs: Levels of Industrial control, Types of Networking,
- Network communications, PLC and Internet, Cell control by PLC Networks.

Activity:

Activity:

- **1. Introduction to programmable open-source microcontroller board** Introduction to Arduino IDE- features, IDE overview. Programming concepts, Concept of GPIO in programmable open-source microcontroller board, digital input and output. Peripheral Interface
- **2.** PLC in automation and its applications

TEXTBOOKS:

- 1. William Bolton, Mechatronics, Sixth Edition, Pearson, ISBN-9788131732533
- **2.** John W. Webb and Ronald A. Reis, Programmable Logic Controllers: Principles and Applications, Fifth Edition, Pearson, 2015, ISBN-13 978-9332555129

REFERENCEBOOKS:

- 1. Aditya P. Mathur, "Introduction to Microprocessors", THM 3rd edition, 2000, ISBN_0-07-460222-5
- 2. Stamatios Manesis & George Nikolakopoulos, Introduction to Industrial Automation, CRC Press, 2018, ISBN: 978-1-4987-0540-0
- **3.** Hugh Jack, Automating Manufacturing Systems with PLCs, Publisher: Lulu.com (September 12, 2010); eBook (Creative Commons Licensed)
- 4. M D Singh and J G Joshi, Mechatronics, Prentice-Hall-India, ISBN-81-203-2986

Course Out comes		Program Outcomes [POs]												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P012	PSO1	PSO2
CO1	3	2												
CO2	2		2											
CO3			3		1									

PROJECT MANAGEMENT

22ME552	
Exam Hours: 3	
SEE: 50Marks	

LTPC:3-0-0-3 Hours/Week:03 Totalhours:40

Course objectives: To impart a comprehensive understanding of how to plan, optimize and efficiently manage projects (or tasks) to implement products, services or developments.

Course Outcomes (COs) {with mapping shown against the Program Outcomes

(POs) Upon successful completion of this course, the student shall be able to

CO's	Statement 's	PO's
1	describe project management, the project lifecycle, planning, estimating, and the project manager's roles.	1, 9, 11
2	demonstrate project organization structures, tendering and contracting processes, scheduling, and CPM and PERT.	1, 2, 9, 11
3	comprehend, how organizations enhance project management through directing, coordinating, and controlling.	1, 9, 10, 11
4	explain the importance of software efforts and techniques in project management and conduct project case studies.	1, 9, 10, 11

Course Contents:

 Introduction to Project Management: Concept of project and project management, characteristic features and classification of projects, phases of Project management, selection of project managers and their duties.

Project Planning and Estimation: Project planning steps, objectives and goals of the project, Feasibility reports, financing arrangements, preparation of cost estimation, evaluation methods for project profitability.

Module-II

Module-I

10 Hrs.

10 Hrs.

Organizing and Staffing the Project Team: Authorities of project manager, organizational organizational structure and types, accountability in project execution, contracts, 3'R'sofcontracting, tendering process and selection of contractors, team building.

Project Scheduling Tools and Techniques: Gantt chart, bar chart for combined activities, Critical path method (CPM) and Project evaluation and review technique (PERT), Numerical problems

Module-III

Project Direction, Coordination and Control: Project direction, communication in a project, PMIS, project coordination control, schedule control& cost control.

Risk management: Introduction, Risk Management Process, Monitoring and Control Risks.

Performance Measures in Project Management: Performance indicators, performance improvement, The CM & DM companies for better project management, project management environment.

Module–IV.	10Hrs
Software project management: Introduction, computerized project management,	managing
software projects, overview of capability maturity model (CMM), project management	nt and the
CMM. Case studies on project management:	
Case studies on Project planning, scheduling, tools and techniques, performance measure	ment.

Self-Study Component:

- History and Evolution of Project Management
- Group of students to take upon mini project and apply various phases of project management. Prepare a report on it.
- Make survey of various Software project management tools and use any one tool.

Textbook:

- 1. ProjectManagementaSystemapproachtoplanningScheduling&Controlling-HaroldKerzner, 10thedition 2009, John Wiley &sons.
- 2. Chaudhry S, ProjectExecutionPlan-PlanforprojectExecutioninteraction, 2001

Reference Books:

- 1. Software Project Management in Practice-Pankaj Jalote, Pearson education
- 2. Fundamentals of Project Management: RoryBurke,2010, Burke Publishing.
- 3. Project planning scheduling & control, James P. Lawis, Meo Publishing Company, 5thedition 2010.
- 4. A Management Guide to PERT and CPM, WEIST & LEVY-Eastern Economy of PHI2002.

Course Outcomes		Program Outcomes [POs]												
COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	909	PO10	P011	P012	PSO1	PSO2
CO1	2								3		3			
CO2	2	2							3		3			
CO3	2								3	2	3			
CO4	2								3	2	3			

QUALITY CONTROL AND MANAGEMENT

22ME553	LTPC:3-0-0-3
Exam Hours: 3	Hours/Week:03
SEE: 50Marks	Totalhours:40

Course objective: To make students apply quality management concepts and statistical process control techniques to improve quality.

Course Outcomes (COs) {with mapping shown against the Program Outcomes (POs)}

Upon successful completion of this course, the student shall be able to:

	#	Course Outcomes	Mapping to POs	Mapping to PSOs
	1	explain the basic concepts of quality management	1,2	-
	2	apply statistical process control techniques to control the quality standards	2	-
	3	develop and interpret control charts	2	-
$\overline{\mathbf{a}}$				

COURSE CONTENTS:

Module – 1								
Quality Management: Introduction, basic approach, TQM framework, different dimensions of								
quality, historical review and Deming's philosophy. Continuous Quality Improveme	nt Tools:							
PDSA cycle, Juran quality trilogy, Kaizen, benchmarking, steps involved in benchmarking								
process, 5S, 3M and poka-yoke.	_							

Module – 2

Statistical Process Control: Introduction, pareto diagram, process flow charts, cause and effect diagram. Statistical fundamentals: Six sigma, process capability, chance and assignable causes of quality variations, statistical basis for the control charts.

Module – 3

10 Hrs.

10 Hrs.

Control charts for variables: Development and interpretation of \overline{X} &R charts: Process Capability Estimating, Process capability ratio, Fraction of nonconforming, Revision of Control Limits and Center Lines, Control Limits, Specification Limits and Natural Tolerance Limits. Development of \overline{X} &charts.

Module-4

10 Hrs.

Control Charts for Attributes: Introduction, control charts for fraction defectives, development of control charts for constant sample size & variable sample sizes, and control charts for defects. Guidelines for implementing control charts, construction, applications and interpretation of p - chart, np - chart and C -chart. **Acceptance Sampling:** Introduction, Types of Sampling Plan.

SELF LEARNING COMPONENT:

- Quality management systems: Quality management principles, development of ISO 9000 series standards, ISO 9001:20015 requirements, implementation of ISO 9001:20015, comparison between ISO 9001:20015 and ISO 9001:2000, documentation, certification, benefits of ISO certification.
- Environmental management systems: Importance of ISO standards, ISO standards for different sectors, environmental management systems, ISO 14000 series standards, concepts of ISO 14001, requirements of ISO 14001:2015, implementation of ISO 14001:2015, benefits of environmental management system, documentation and certification.

Textbooks:

- 1. Dale H. Bester field, Total Quality Management, Pearson Education India, 2018. ISBN: 9789353066314, Fifth Edition
- **2.** Douglas C. Montgomery, Introduction to Statistical Quality Control, John Wiley & Sons, Inc. 6th edition. ISBN: 978-0-470-16992-6

Reference Books:

- 1. M. Zairi, Publisher, Total Quality Management for Engineers, Wood head Publishing, ISBN: 1855730243
- 2. Manohar Mahajan, Statistical Quality Control, Dhanpati Rai and Sons, New Delhi, 2018.
- 3. E.L. Grant, and R.S. Leavenworth, Statistical Quality Control, Seventh Edition, TMH, New Delhi, 2016. ISBN: 0-07-114248-7

COURSE ATRICULATION MATRIX

Course Outcomes		Program Outcomes [POs]												
COs	POI	P02	PO3	PO4	PO5	PO6	P07	PO8	P09	P010	P011	P012	PSO1	PSO2
CO1	3	2												
CO2		3												
CO3		3												

PRINCIPLESOFCAD/CAM

22ME554

Exam Hours:3

SEE:50Marks

LTPC:3-0-0-3 Hours/ Week:03 Total hours: 40

Course Objective:

To make students apply the concepts of CAD to develop models of machine components and CAM to obtain machined components.

Course Outcomes (COs) {with mapping shown against the Program

Outcomes (POs)} Upon successful completion of this course, students shall

be able to:

COs	Statement	Pos	PSO
			S
1	acquire the basic concepts of CAD/CAM with their software requirements and different geometrical modeling techniques to develop models of machine components	1,3,5	2
2	Illustrate the concepts of CNC and CAM to write part programs for various Machining operations and obtain machined components	1,2,5	-
3	Discuss the advanced manufacturing approaches to ensure optimum utilization of available resources	1,2	-

COURSECONTENTS:

Mod	10Hrs.									
ule-I										
Computer Aided Design: Introduction of CAD and CAM tools, Product Life Cycle.										
Software configuration for graphic system, Functions of graphic package. Principles of										
Computer Graphics: Graphic primitives, Database Co-ordinate	systems, 2-D									
Transformations of geometry, Display functions like Window, Viewpor	t, viewing and									
clipping operations.										
Module-2	10 Hrs.									
Modeling Techniques: Geometrical Modeling and its importance, modelin	g types: solid,									
wireframe & surface modeling, approaches. Mathematical representation	s of Surfaces:									
Surface entities, Parametric representations of Analytical and Synthetic su	rfaces (Bezier									
and B-spline).										
Module-3	10 Hrs.									
Computer Aided Manufacturing: Basic components of NC, NC c	oordinate									
systems, NC motion control systems, CNC and DNC features.										
CNC programming Techniques: Part programming fundamentals, Pre	paratory and									
Miscellaneous functions, Typical examples of Drilling and Milling operat	ions through									
manual part programming methods.	_									
Module-4	10 Hrs.									
Advanced Manufacturing Approaches: Rapid prototyping and its proces	ses, SL, LTP,									
Flexible Manufacturing System, Reconfigurable Manufacturing System	ems, Reverse									
Engineering, Lean manufacturing,										

Text Books:

- 1. Michel P Groover & Emory W Zimmeres, JR, CAD & CAM, TMH, 2nd Edition, 2004, ISBN-81-203-04020-0
- 2. Ibrahim Zeid "S. Subramanya V. Raju, CAD & CA Theory and practice, TMH, 2nd Edition, 2010, ISBN-0-07-463991-9

Reference Books:

- 1. Dr. Sadhu Singh, Computer Aided Design and Manufacturing, Khanna publishers, 2011, ISBN:81-7409-069-3
- P.N Rao, "CAD&CAM Principles & Application", TMH, 2nd Edition, 2004, ISBN-13-978-81-2336-8.

Course Outcomes		Program Outcomes [POs]												
COs	P01	PO2	PO3	P04	PO5	PO6	PO7	PO8	P09	PO10	P011	P012	PSO1	PSO2
CO1	2	_	1	_	1	-	-	_	-	_	_	_	-	1
CO2	2	1	_	-	1	-	_	_	_	_	_	_	_	1
CO3	2	1												

MINI PROJECT

22ME506 Exam Hours:3 SEE:50Marks

LTPC:0-0-4-2 Hours/ Week:04 Total hours:

Course Objectives: To take part in a group to demonstrate the acquired skill & knowledge gained to identify, formulate, analyze, evaluate and to provide meaningful engineering solutions to Industrial/societal needs.

Course Outcomes (COs) {with mapping shown against the Program Outcomes (POs)}

U	oon successful	completion of	this course,	the student shal	l be able to:
- 1		· · · · · · · · · · · · · · · · · · ·			

#	Course Outcomes	Mapping to POs	Mapping to PSOs
1.	identify thrust areas in field of Mechanical or allied areas of Engineering	1, 2, 4, 6,7	-
2.	generate and implement innovative ideas for social benefit	1, 2, 4, 5,6	-
3.	Conducting preliminary Analysis /Modeling /Simulation /Experiment /Design/Feasibility	4, 5, 6, 8, 9, 10, 11, 12	-
4.	prepare a report on the Study conducted for presentation	10,12	-

The objective of Mini Project is to enable the student to take up investigative study in the broad field of Mechanical Engineering, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the department on an individual basis or two/three students in a group, under the guidance of a supervisor. This is expected to provide a good initiation for the student(s) in R&D work. The mini project is designed to develop practical ability and knowledge about tools/techniques to solve the actual problems related to industry, academic institutions or similar area. The mini project should be undertaken preferably by a group of minimum two and maximum four students who will jointly work together and implement the project. Students can take up any application level/fabrication level/ experimental design / implementation tasks of relatively minor intensity and scope as compared to the major project, pertaining to a relevant domain of study. Projects can be chosen either from the list provided by the faculty or in the field of interest of the student. At the end of each phase, presentation and demonstration of the project should be conducted, which will be evaluated based on the rubrics set by the department under the committee of HOD, one professor, one Associate professor and one Assistant Professor. A detailed project report duly approved by the guide in the prescribed format should be submitted by the student for final evaluation.

SCHEME OF EVALUATION

	FIRST PHASE	MAX MARKS: 10
Sl. No.	Particulars	Distribution of Marks
1.	Literature Survey (Team)	5
2.	Presentation skill (Individual)	3
3.	Viva voce (Individual)	2

	SECOND PHASE	Max Marks: 15
Sl. No.	Particulars	Distribution of Marks
1.	Problem formulation (Team)	5
2.	Methodology followed (Team)	5
3.	Presentation skill (Individual)	3
4.	Viva voce (Individual)	2

	THIRD PHASE	Max Marks: 25
Sl. No.	Particulars	Distribution of Marks
1.	Observations / modelling/Study etc. (Team)	6
2.	Results & Discussion (Team)	6
3.	Conclusions (Team)	5
4.	Presentation skill (Individual)	5
5.	Viva voce (Individual)	3

Examination	Maximum marks	Minimum marks to qualify
CIE	100	40

Course Outcomes		Program Outcomes [POs]												
COs	PO1	P02	PO3	P04	PO5	PO6	PO7	PO8	P09	PO10	P011	P012	PSO1	PSO2
CO1	2	3		3		2	2							
CO2	2	3			2	2								
CO3				3	3	2		3	3	2	2	2		
CO4										3		2		

A (1991) A C A (1991)	22RIP	INTELLECTUAL	L-T-P	(3-0-0) 3					
Course Code CIE	50	Hours/		3					
				-					
SEE	50	Total		40 					
•	re: To give an overview of technical research the end of course, student will be		nd patenting	methodology.					
			Mapping to	Mapping t					
#	Course Outcomes	-	PO's	PSO's					
1. Carry ou	It Literature Review and write technica	al paper	2,3,4,8,12	-					
2. Describe	e the fundamentals of patent laws and t	the patent	6,8,10,12						
drafting procedure.									
3. Elucidat	e the copyright laws and subject matte	ers of copyright	6,8,10,12						
MODULE-1									
Research Practic Literature Revi of Prior Art ,Biblio	of Engineering Research. Ethics in I e, Types of Research Misconduct, Ethi ew and Technical Reading, New and graphic Databases, Web of Science, C ard, Introduction to Technical Read	ical Issues Related I Existing Knowled Google and Google	to Authorsh dge, Analysi e Scholar, E	ip. s and Synthesis ffective Search:					
Creative Reading		6	6	10 Hrs.					
Styles for Citatic	d Citations: Giving Credit Wherev and Keywords on Citations, Knowle ns, Acknowledgments and Attribution ng and Publishing : Free Writing and	edge Flow through s.	n Citation, (and Attributes, Citing Datasets,					
Styles for Citatic Technical Writi Technical Writin Approach: Title	and Keywords on Citations, Knowle ns, Acknowledgments and Attribution ng and Publishing : Free Writing and g, Patent or Technical Paper?—The C Abstract, and Introduction, Method	edge Flow through as. d Mining for Ideas Choice, Writing, J	n Citation, (, Attributes ournal Pape	and Attributes, Citing Datasets, and Reasons of r: Structure and					
Styles for Citatic Technical Writi Technical Writin Approach: Title	and Keywords on Citations, Knowle ns, Acknowledgments and Attribution ng and Publishing : Free Writing and g, Patent or Technical Paper?—The C Abstract, and Introduction, Method ts, and Closures	edge Flow through as. d Mining for Ideas Choice, Writing, J	n Citation, (, Attributes ournal Pape	and Attributes, Citing Datasets, and Reasons of r: Structure and Table, Figures,					
Styles for Citatic Technical Writi Technical Writin Approach: Title, Acknowledgmen	and Keywords on Citations, Knowle ns, Acknowledgments and Attribution ng and Publishing : Free Writing and g, Patent or Technical Paper?—The C Abstract, and Introduction, Method ts, and Closures MODULE-3	edge Flow through as. d Mining for Ideas Choice, Writing, J as, Results, and D	n Citation, (s, Attributes ournal Pape Discussions,	and Attributes, Citing Datasets, and Reasons of r: Structure and Table, Figures, 10 Hrs.					
Styles for Citatic Technical Writin Technical Writin Approach: Title, Acknowledgmen Introduction Technology in IP Laws and A Patents: Condit Rights Associated with Patentable Matters. Patent II Process of Pate Forms. Jurisdict	and Keywords on Citations, Knowle ns, Acknowledgments and Attribution ng and Publishing : Free Writing and g, Patent or Technical Paper?—The C Abstract, and Introduction, Method ts, and Closures <u>MODULE-3</u> Intellectual Property: Role of IP in overnance, IP as a Global Indicator of Acts in India. ions for Obtaining a Patent Protection Patents. Enforcement of Patent Rig nfringements. enting: Prior Art Search. Choice of ion of Filing Patent Application. Pub	edge Flow through is. d Mining for Ideas Choice, Writing, J ls, Results, and D n the Economic an Innovation, Origin on, To Patent or N thts. Inventions El Application to be plication. Pre-gram	n Citation, G s, Attributes ournal Pape Discussions, nd Cultural I n of IP, Maj Not to Pater ligible for I e Filed. Pat t Opposition	and Attributes, Citing Datasets, and Reasons of r: Structure and Table, Figures, 10 Hrs. Development of or Amendments at an Invention. Patenting. Non- ent Application n. Examination.					
Styles for Citatic Technical Writin Technical Writin Approach: Title, Acknowledgmen Introduction To the Society, IP G in IP Laws and A Patents: Condit Rights Associated with Patentable Matters. Patent II Process of Pate Forms. Jurisdict Grant of a Pater	and Keywords on Citations, Knowle ns, Acknowledgments and Attribution ng and Publishing : Free Writing and g, Patent or Technical Paper?—The C Abstract, and Introduction, Method ts, and Closures <u>MODULE-3</u> Intellectual Property: Role of IP in overnance, IP as a Global Indicator of acts in India. ions for Obtaining a Patent Protection Patents. Enforcement of Patent Rig nfringements. enting: Prior Art Search. Choice of ion of Filing Patent Application. Public t. Validity of Patent Protection. Post	edge Flow through as. d Mining for Ideas Choice, Writing, J as, Results, and D n the Economic an Innovation, Origin on, To Patent or N thts. Inventions El Application to be plication. Pre-gram	n Citation, (s, Attributes ournal Pape Discussions, nd Cultural I n of IP, Maj Not to Pater ligible for I e Filed. Pat t Opposition . Do I Need	and Attributes, Citing Datasets, and Reasons of r: Structure and Table, Figures, 10 Hrs. Development of or Amendments at an Invention. Patenting. Non- ent Application n. Examination.					
Styles for Citatic Technical Writin Technical Writin Approach: Title, Acknowledgmen Introduction To the Society, IP G in IP Laws and A Patents: Condit Rights Associated with Patentable Matters. Patent II Process of Pate Forms. Jurisdict Grant of a Pater	and Keywords on Citations, Knowle ns, Acknowledgments and Attribution ng and Publishing : Free Writing and g, Patent or Technical Paper?—The C Abstract, and Introduction, Method ts, and Closures <u>MODULE-3</u> Intellectual Property: Role of IP in overnance, IP as a Global Indicator of Acts in India. ions for Obtaining a Patent Protection Patents. Enforcement of Patent Rig nfringements. enting: Prior Art Search. Choice of ion of Filing Patent Application. Pub	edge Flow through as. d Mining for Ideas Choice, Writing, J as, Results, and D n the Economic an Innovation, Origin on, To Patent or N thts. Inventions El Application to be plication. Pre-gram	n Citation, (s, Attributes ournal Pape Discussions, nd Cultural I n of IP, Maj Not to Pater ligible for I e Filed. Pat t Opposition . Do I Need	and Attributes, Citing Datasets, and Reasons of r: Structure and Table, Figures, 10 Hrs. Development of or Amendments at an Invention. Patenting. Non- ent Application n. Examination.					

Enforcement Advisory Council (CEAC).

Trademarks: Eligibility Criteria. Who Can Apply for a Trademark. Acts and Laws. Designation of Trademark Symbols. Classification of Trademarks. Registration of a Trademark is Not Compulsory. Validity of Trademark. Types of Trademark Registered in India. Trademark Registry. Process for Trademarks Registration.

Self study: Case Studies on Patents. Case study of Curcuma (Turmeric) Patent, Case study of Neem Patent, IP Organizations In India.

Textbooks:

- 1. Dipankar Deb, Rajeeb Dey, Valentina E, Balas, "Engineering Research Methodology", Springer, 2019.
- 2. Prof. Rupinder Tewari, Ms. Mamta Bhardwa, "Intellectual Property", Professor Gurpal Singh Sandhu Honorary Director, Publication Bureau, Panjab University, 2021.

Reference Books:

- 1. David V. Thiel, "Research Methods for Engineers", Cambridge University Press, 2014.
- 2. N.K.Acharya, "Intellectual Property Rights", Asia Law House, 8th Edition, 2021.

MOOC:

https://onlinecourses.swayam2.ac.in/ntr24_ed08/preview

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	3	2	3	-	-	-	2	-	-	-	3	-	-
CO2	-	-	-	-	-	3	-	2	-	3	-	3	-	-
CO3	-	-	-	I	I	3	1	2	1	3	I	3	-	-

Course	Title		Environmental Studies									
Course	Code	22EVS		L-T-P	(0-0-2) 1							
Exam		3 Hrs.		Hours/Week	2							
CIE		100 Marks		Total Hours	20							
Course	Outcomes:	At the end of the cours	se, student will be able to:									
#		Cour	rse Outcomes (CO)		Mapping to POs							
1.	Acquire a problems.		tivity to the total environment	t and its allied	7, 9,12							
2.	Develop strong feelings of concern, sense of ethical responsibility for t environment and the motivation to act in protecting and improving it.											
3.	Analyze and evaluate environmental measures in real world situations in terms of ecological, political, economic, societal and aesthetic factors.											
		MOD	ULE-1		5Hrs							
Enviror	ment: De	finition, Ecosystem,	Balanced ecosystem, Effect	s of human a	ctivities of							
environ	nent Agricu	lture Housing Industry	Mining and Transportation.									
			ULE-2 ailability and Quality, Water bo		5 Hrs.							
	-	and Sulphur Cycles.	ter. Mineral Resources - Forest		5Hrs							
Pollutio	n: Effects o	f pollution - Water pol	lution - Air pollution Land poll	ution - Noise pol	lution.							
		1 1	ULE-4	•	5 Hrs.							
Growth,	Climate cl	nange and Global war	ortance: Acid Rain, Ozone l ming. Environmental Impact Legal aspects. Water Act and A	Assessment and								
Text Bo	oks:											
Text Bo 1. 1	oks: Environmen	tal Studies - Dr. D.L M	anjunath, Pearson Education -2	2006								
Text Bo 1. 1 2. 1	o ks: Environmen Environmen	tal Studies - Dr. D.L M		2006								
Text Bo 1. 1 2. 1 Referent 1 1. 1	ooks: Environmen Environmen ice Books: Environmen	tal Studies - Dr. D.L M tal Studies - Dr. S. M. 1 tal Studies - Benny Jos	anjunath, Pearson Education -2 Prakash - Elite Publishers – 200 eph - Tata McGraw ill- 2005	2006 06	Hell of							
Text Bo 1. 1 2. 1 Referent 1. 1 2. 1	oks: Environment Environment Ce Books: Environment Principles of India.	tal Studies - Dr. D.L M tal Studies - Dr. S. M. I tal Studies - Benny Jos Environmental Scienc	anjunath, Pearson Education -2 Prakash - Elite Publishers – 200 eph - Tata McGraw ill- 2005 e and Engineering P. Venugopa	2006)6 ala Rao, Prentice	Hall of							
Text Bo 1. 1 2. 1 Referent 1. 1 2. 1 1. 1 3. 1	ooks: Environment Environment Ce Books: Environment Principles of India. Environment	tal Studies - Dr. D.L M tal Studies - Dr. S. M. I tal Studies - Benny Jos Environmental Scienc tal Science and Engine	anjunath, Pearson Education -2 Prakash - Elite Publishers – 200 eph - Tata McGraw ill- 2005	2006)6 ala Rao, Prentice	Hall of							
Text Bo 1. 1 2. 1 Referent 1. 1 2. 1 1. 1 3. 1	oks: Environment Environment Ce Books: Environment Principles of India.	tal Studies - Dr. D.L M tal Studies - Dr. S. M. I tal Studies - Benny Jos Environmental Scienc tal Science and Engine	anjunath, Pearson Education -2 Prakash - Elite Publishers – 200 eph - Tata McGraw ill- 2005 e and Engineering P. Venugopa	2006 06 ala Rao, Prentice 11 India. Marks Du	ration							
Text Bo 1. 1 2. 1 Referen 1. 1 2. 1 1 3. 1 Assessm	ooks: Environment Environment Environment Principles of India. Environment India. Environment India. CIE	tal Studies - Dr. D.L M tal Studies - Dr. S. M. I tal Studies - Benny Jos Environmental Scienc tal Science and Engine	anjunath, Pearson Education -2 Prakash - Elite Publishers – 200 eph - Tata McGraw ill- 2005 e and Engineering P. Venugopa ering - Meenakshi, Prentice Ha	2006 06 ala Rao, Prentice 11 India. Marks Du								

CIE	Schedule	Assessment Method	Marks	Duration (Min.)
CIE I	At the end of 8 weeks	Objective Questions	25	60
CIE II	At the end of 11 weeks	Objective Questions	25	60
Project	At the end of 14 weeks	Project/Presentation/Prototy pe development/Plantation	50	-

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	-	3	-	3	-	-	-	-	-
CO2	-	-	-	-	-	3	-	3	-	-	-	-	-	-
CO3	-	-	I	I	I	3	3	3	2	-	-	-	-	-

				Т	eachi	ng Hou	rs/We	ek
Sl. No.		rse Category urse Code	Course Title	Theory Lecture	Tutorial	Credits	Duration in hours	
				L	Τ	Р	С	D
1	IPCC	22ME601	Heat Transfer	3	0	2	4	5
2	PCC	22ME602	Mechanical Vibrations	3	0	0	3	3
3	PEC	22ME63X	Professional Elective - II	3	0	0	3	3
4	OEC	220EME64X	Open Elective -I	3	0	0	3	3
5	PROJ	22ME605	Major Project Phase - I	0	0	4	2	3
6	PCCL	22ME606	Design lab	0	0	2	1	3
7	AEC	22ASK	Analytical Ability &Soft Skills	0	0	2	1	1
8	MC	22ME608	Sustainable Engineering	0	0	2	0	2
9	OEC 22SWY S		Swayam (NPTL)	0	1	0	0	2
			Total	12	1	12	17	25

VI Semester Academic Year 2024-25

Professional Elective-II Course

22ME631	Additive Manufacturing	22ME633	Geometric Dimensioning and Tolerancing
22ME632	Industrial Automation	22ME634	Automotive Engineering

Open Elective-I Course

220E ME 61	Principles of Manufacturing
220E ME 62	Project Management
220E ME 63	Accounting for Engineers
220E ME 64	Operations Research
220E ME 65	Industrial Engineering and Ergonomics
220E ME 66	Occupational Health and Safety Engineering

22ME601 Exam Hours:03 SEE: 50 Marks

LTPC: 3-0-2-4 Hours / Week: 05 Total hours:40+12

Course objective:

To equip the students with fundamentals and mechanisms of heat transfer enabling them to develop methodologies for solving practical problems.

Course Outcomes (COs) {with mapping shown against the Program Outcomes (POs)}

Upon completion of the course, students shall be able to:

COs	Statement	POs
1.	apply basic law of heat transfer to account for the conscience of modes of heat transfer in thermal analysis of engineering system	1, 2,3,9,10
2.	analyze unsteady heat transfer in lumped capacitance and semi-infinite solid thermal systems.	1, 2
3.	analyze the heat transfer mechanism through natural and forced convection inside ducts and exterior surfaces	1, 2,7,9,10
4.	carry out preliminary design of heat exchanger using LMTD methods and apply the concept of boiling and condensation and the principle of radiation heat transfer	1, 2,7,9,10

COURSE CONTENTS:

Module –I	
Introduction: Modes of heat transfer; Basic laws governing modes of heat transfer. Conduction-Basic Equations: Derivation of general form heat conduction equation in rectangular coordinates. Types of boundary conditions, Thermal resistance in series and in parallel. One dimensional steady state conduction: Steady state conduction in a slab, cylinder and sphere with and without heat generation, Composite wall, overall heat transfer coefficient, critical thickness of insulation, Heat transfer in extended surfaces of uniform cross-section without heat generation, long fin, short fin with insulated tip and	10 Hrs.
without insulated tip. Fin efficiency and effectiveness. Numerical problems.	
Module – II	
 One-Dimensional Transient Conduction: Conduction in solids with negligible internal temperature gradient (Lumped system analysis), Use of Transient temperature charts (Heisler's charts) for transient conduction in slab, long cylinder, and sphere; Numerical Problems. Free or Natural Convection: Application of dimensional analysis for free convection-physical significance of Grashoff number; use of correlations of free convection in vertical, horizontal, and inclined flat plates, vertical and horizontal cylinders and spheres, Numerical problems. 	10 Hrs.
Module – III	
Forced Convection: Applications of dimensional analysis for forced convection. The physical significance of Reynolds, Prandtl, Nusselt and Stanton numbers. Use of various correlations for hydro dynamically and thermally developed flows inside a duct, use of correlations for flow over a flat plate, over a cylinder and sphere. Numerical problems. Heat Exchangers: Classification of heat exchangers; overall heat transfer coefficient, fouling and fouling factor; LMTD method of analysis of heat exchangers. Numerical problems.	10 Hrs.

Module – IV

Condensation And Boiling: Types of condensation (discussion only), use of correlations for condensation on vertical flat surfaces, horizontal tube, and horizontal tube banks; Reynolds number for condensate flow; regimes of pool boiling, pool boiling correlations. Numerical problems. **Radiation Heat Transfer:** Radiation laws, Thermal radiation; Radiation heat exchange between two parallel infinite black surfaces and infinite gray surfaces; effect of radiation shield; intensity of radiation and solid angle; Numerical problems

TEXTBOOKS:

- 1. Principals of Heat Transfer, Frank Kreith, Raj M. Manglik, Mark S. Bohn, Seventh Edition, Cengage learning, 2011.
- 2. Yunus Cengel and Afshin Ghajar, Heat and Mass Transfer: Fundamentals and Applications, McGraw Hill Education (India) Private Limited;5th Edition,2015.

REFERENCE BOOKS:

- 1. Fundamentals of Heat and Mass Transfer, Incropera, F. P. and De Witt, D. P., 5th Edition, John Wiley and Sons, New York, 2006.
- 2. P.K.Nag, Heat & Mass Transfer, TMH, 2008. ISBN:0-07-047337-4
- 3. S.P.Sukhatme, Heat transfers, 4th edition. ISBN:8173715440
- 4. R.K.Rajputh, Heat & Mass Transfer, S.Chand& Company Ltd, 3rd Edition, 2006. ISBN :81-219-1777-8

HEAT TRANSFER DATA HANDBOOK:

1. Heat and Mass Transfer Data Book (S.I. Unit) by V.M. Domkundwar, Anand V. Domkundwar ISBN: 67000000039, Publisher: DhanpatRai&Co.Year of publishing: 2014.

E-BOOKS/WEB REFERENCES:

- 1. A Textbook of Heat Transfer, John H Lienhard, 4th Edition,
- 2. NPTEL Heat Transfer course for Mechanical Engineering, http://nptel.ac.in/courses/112101097/
- 3. Heat Transfer, Chris Long & Naser Sayma, Bookboon.com

MOOCs:

- 1. Fluid flow, Heat and Mass Transfer- <u>http://ocw.tudelft.nl/courses/applied-earth-sciences/fluid-flow-heat-mass-transfer/course</u>
- 2. Heat transfer course- https://legacy.saylor.org/me204/Intro/

Exp NO.	EXPERIMENT NAME	Marks	COs	Pos	Level
1	Determination of Thermal conductivity of a Metal rod.	20	CO1	1,2, 9,10	3
2	Determination of Thermal conductivity of a liquid	20	CO1	1,2, 9,10	3
3	Determination of overall heat transfer coefficient of a Composite Wall	20	CO1	1,2, 9,10	3
4	Determination of Heat Transfer co-efficient for free convection wall	20	CO3	1,2, 9,10	3
5	Determination of Heat Transfer co-efficient for forced convention	20	CO3	1,2, 7,9,10	3
6	Determination of Stefan Boltzmann constant	20	CO4	1,2, 9,10	3
7	Determination of emissivity of a surface.	20	CO4	1,2, 9,10	3
8	Determination of efficiency and Effectiveness of the fin by natural convection using pin fin apparatus	20	CO1	1,2,7, 9,10	3
9	Determination of efficiency and Effectiveness of the fin by forced convection using pin fin apparatus	20	CO1	1,2, 7,9,10	3
10	Determination of LMTD and effectiveness in a parallel flow and counter flow Heat exchanger	20	CO4	1,2, 7,9,10	3
	Average of 10 Experiments = 20 marks		26	Hrs.	

Course Articulation Matrix

Course		Program Outcomes [POs]												
Outcomes														
COs	PO1	PO2	PO3	P04	PO5	PO6	PO7	PO8	PO9	PO10	P011	P012	PSO1	PSO2
CO1	3	3	2						3	3				
CO2	3	3	2						3	3				
CO3	3	3	2				2		3	3				
CO4	3	3	2				2		3	3				

MECHANICAL VIBRATIONS

22ME602

Exam Hours:3 SEE:50Marks

LTPC:3-0-0-3 Hours/Week:03 **Total hours: 40**

Course objectives: To provide basic knowledge on principles of vibrations to analyses, model and build mechanical systems.

Course Outcomes (COs) {with mapping shown against the Program Outcomes

#	Course Outcomes	Mapping to POs	Mapping to PSOs
1.	analyze undamped and amped free vibration for single degree freedom systems	2, 5	-
2.	analyze forced vibration for single degree of freedom systems	2	-
3.	design mechanical systems to achieve vibration isolation and measurement of vibration	2	-
4.	analyze free & forced vibration for two and multi degree of freedom systems	2, 3	-

(**POs**) Upon completion of the course, students shall be able to:

Course Contents:

Module-1 12Hrs. Introduction: Types of Vibrations, Simple Harmonic Motion (S.H.M), and principle of superposition applied to Simple Harmonic Motion, Beats, Undamped Free Vibrations: Single degree of freedom systems, Undamped free vibrations natural frequency of free vibration, stiffness of spring elements, effect of mass of spring, Compound Pendulum.

Damped Free Vibrations: Single degree freedom systems, different types of damping, concept of critical damping and its importance, study of response of viscous damped systems for cases of under damping, critical and over damping, Logarithmic decrement Madula 2

Iviodule-2						
Forced Vibrations: degree freedom systems, steady state solution with viscous damping due to						
harmonic force. Solution by Complex algebra, reciprocating and rotating unbalar						
isolation-transmissibility ratio, due to harmonic excitation and support motion.						
Module-3						

10 Hrs.

ΛΟΤΤ

Vibration Measuring Instruments & Whirling of Shafts: Vibrometer and accelerometer. Whirling of shafts with and without air damping, discussion of speeds above and below critical speeds.

Systems with Two Degrees of Freedom: Introduction, principal modes and normal modes of vibration, co-ordinate coupling, generalized and principal co-ordinates, free vibration in terms of initial conditions.

10	Hrs.
10	пт.

Numerical Methods for Multi Degree Freedom Systems: Introduction, Influence coefficients, Maxwell reciprocal theorem, Dunkerley's equation. Orthogonality of principal modes, method of matrix iteration - Method of determination of all the natural frequencies using sweeping matrix and orthogonality principle. Holzer's method, Stodola method.

Module-4

Self-Study Component

- 1. Harmonic
 Analysis
 Fourier's
 Series.
 Vibration
 Analysis:

 <u>https://youtu.be/Vj1xmze3GIE.Vibration</u>
 Diagnostics
 for

 beginners:https://youtu.be/4fDqII7ut6Y
 Diagnostics
 for
- 2. Applications of Two Degrees of Freedom Systems like vehicle e suspension, dynamic vibration absorber, Dynamics of reciprocating Engines
- 3. Mechanical Vibration-Virtual Labs <u>http://mdmv-nitk.vlabs.ac.in/#</u>.

TEXTBOOKS:

1.S.S. Rao, *Mechanical Vibrations*, Pearson EducationInc,6thEdition,2017.ISBN-9780134361307.

REFERENCEBOOKS:

- 1. Leonanrd Meirovitch, Elements of Vibrations Analysis, MH, Special Indian edition, 2007, ISBN-81-7700-047-0.
- 2. S.Graham Kelly, *Mechanical Vibrations*, Schaum' soutline series, TMH ,Special Indian Edition,2007,ISBN-14-09780070616790.

COURSE ATRICULATION MATRIX

Course Outcomes	Program Outcomes [POs]													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	909	PO10	P011	P012	PSO1	PSO2
CO1		3			1									
CO2		3	1											
CO3		3												
CO4		2	3											

ADDITIVE MANUFACTURING

22ME631

Exam Hours: 3

SEE: 50 Marks

Course objectives: To understand the basic concepts of rapid prototyping, and identify their advantages, limitations and applications

Course Outcomes (COs) {with mapping shown against the **Program Outcomes (POs)**} Upon completion of the course, students shall be able to:

#	Course Outcomes	Mapping to POs	Mapping to PSOs
1.	identify the development of different rapid prototyping techniques	1,7	
2.	describe the working principles and process parameters of additive manufacturing processes	1, 3	
3.	interpret suitable post processing operation based on product repair requirement	1,7	
4.	Explore applications of different prototyping systems and develop a model using additive manufacturing processes	1, 5, 9,12	

Course Contents:

Module – 1	10 Hrs.				
Introduction: Prototype Fundamentals, Historical Development, Fundamentals	of Rapid				
Prototyping, Advantages of Rapid Prototyping, Commonly Used Terms, Classifications	s of Rapid				
Prototyping System.					
Rapid Prototyping Process Chain: Fundamental Automated Processes, Process Chain.					
Stereo Lithography Systems: Principle, Process parameter, Process details, Data prepar	ation, data				
files and machine details, Application.	I				
Module – 2					
 Selective Laser Sintering: Type of machine, Principle of operation, process parameter preparation for SLS, Applications, Process parameter, Path generation, Applications. Fusion deposition modeling: Principle, Process parameter, Process details, Applications Solid Ground Curing: Principle of operation, Machine details, Applications. 					
Module –3	10 Hrs.				
Laminated Object Manufacturing: Principle of operation, Process details, applicat	ion, LOM				
materials.					
Laser Engineered Net Shaping (LENS): Principle of operation, Process details, applicat	ions.				
Friction stirs additive manufacturing: Process, parameters, advantages, limita applications.	tions and				
Module – 4	10 Hrs.				

LTPC: 3-0-0-3

Total hours: 40

Post Processing of AM Parts: Support Material Removal, Surface Texture Improvement, Accuracy Improvement, Aesthetic Improvement, Preparation for use as a Pattern, Property Enhancements using Non-thermal and Thermal Techniques.

Case Studies on Rapid Prototyping Applications: Aerospace Industry, Automotive Industry, Biomedical Industry, Jewelry Industry, Coin Industry and Tableware Industry.

SELF LEARNING COMPONENT:

- 1. 3 D Printers, Historical Development.
- 2. List the materials used in development of engineering and commercial products using stereo lithography, selective sintering, fused deposition modeling and laminated object manufacturing processes.
- 3. Rapid Prototyping Applications: Application Material Relationship, Finishing Processes, Applications in Design, Applications in Engineering, Analysis and Planning, Applications in Manufacturing and Tooling.

Realization of product by modeling simple machine parts or assembly using the 3D printing facilities in the Department.

TEXT BOOK:

- 1. 3D Printing and Additive Manufacturing: Principles & Applications, Chua Chee Kai, Leong Kah Fai, World Scientific, 2015, 4th Edition.
- 2. Rapid Manufacturing: The Technologies and Applications of Rapid Prototyping and Rapid Tooling, D.T. Pham, S.S. Dimov, Springer 2001.
- 3. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, Ian Gibson, David W Rosen, Brent Stucker, Springer, 2015, 2nd Edition.

REFERENCE:

1. Rapid Prototyping: Principles and Applications in Manufacturing, Rafiq Noorani, John Wiley & Sons, 2006.

Additive Manufacturing, Second Edition, Amit Bandyopadhyay Susmita Bose, CRC Press Taylor & amp; Francis Group, 2020.

Course Outcomes		Program Outcomes [POs]												
COs	PO1	PO2	PO3	P04	PO5	PO6	PO7	PO8	909	PO10	P011	P012	PSO1	PSO2
CO1	3						1							
CO2	3		1											
CO3	3						1							
CO4	3				2				1			1		

COURSE ATRICULATION MATRIX

Industrial Automation

22ME632 Exam Hours: 3

SEE: 50 Marks

LTPC: 3-0-0-3 Hours / Week: 04 Total hours: 40

Course Objective: To make students apply the principles and strategies of automation while creating a new facility or upgrading the existing one.

Course Outcomes (COs){with mapping shown against the **Program Outcomes (POs)**} **Upon successful completion of this course, the student shall be able to:**

COs	Statement	POs
1.	apply the concepts of automation, principles and strategies	1, 3
2.	explain the fundamentals of robotics and discrete control	1, 5
3.	explain the considerations in material handling system design and concepts of group technology and cellular manufacturing	1
4.	apply the concepts of FMS, design for automated assembly, process planning and concurrent engineering	1

Course Contents:

Module – 1	10 Hrs.					
Automation: Introduction, Automation Principles and strategies, Basic elements of an system, advanced automation functions, Levels of automation. Production co mathematical models: Introduction, Production rate, Production capacity, Utiliz availability, Manufacturing lead time, (simple problems using these models).						
Module – 2	10 Hrs.					
 Industrial Robotics: Introduction, Robot anatomy and related attributes, Robot control systems, end effectors, sensors in robotics, Industrial robot applications. Discrete control using programmable logic controllers and personal computers: Discrete process control, ladder logic diagrams, PLC-components, operating cycle, additional capabilities, programming, personal computers using soft logic 						
Module –3	10 Hrs.					
 Material Handling: Introduction to Material handling equipment, Considerations in material handling system design, The 10 principles of Material handling. Introduction to Manufacturing Systems: Components and classification of manufacturing systems, overview of the classification scheme. Group Technology and Cellular Manufacturing: Manufacturing process functions (learning curves), part families, parts classification and coding, Production Flow Analysis, Cellular Manufacturing and application considerations in GT. 						
Module – 4	10 Hrs.					

FMS and Automated Assembly systems: Definition, components, application and benefits of FMS, Fundamentals of Automated Assembly systems, Design for automated assembly.

Process planning, concurrent engineering and advanced automation: Process planning, CAPP, CE and Design for manufacturing, Advanced manufacturing planning. Smart manufacturing and Industry 4.0

Self-study component:

Using the best internet search Engines Carryout of the following 4 Activities with Proper Video/PPT. Finally, two best Activities will be picked for evaluation. All Activities carry 5 marks each:

- 1. Provide the History of Manufacturing & Automation that drove Industrial Revolution
- 2. Select one real application of Automation / Robotics in the field of Latest Technology Development and Industry-4.0 & Industry-5.0 relevant (such as Agriculture, Digital Society, Medical, Military, and Manufacturing Applications etc.)
- 3. Write down the Ladder diagram with electrical circuits of advanced manufacturing applications.
- 4. Using latest studies prepare a detailed brief report of Industry 4.0 and future World class manufacturing.

Textbooks:

- 1. Mikell.P. Groover, "Automation, Production Systems and Computer Integrated Manufacturing", Fourth Edition, Pearson Education, Limited, 2015. ISBN: 1292076119, 9781292076119.
- 2. S. Kant Vajapayee, "**Principles of Computer-integrated Manufacturing**", PHI, 1995. ISBN: 0024222410, 9780024222411.
- 3. Vishwanadham and Narahari, "Performance Modeling of Automated Manufacturing Systems", PHI,2005,.ISBN: 8120308700, 9788120308701.

Course Out comes	Program Outcomes [POs]													
COs	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	P011	P012	PSO1	PSO2
CO1	3		1											
CO2	3				2									
CO3	3													
CO4	3													

GEOMETRIC DIMENSIONING AND TOLERANCING

21ME633

Exam Hours: 3

SEE: 50 Marks

Hours / Week: 02

Total hours: 40

LTPC: 3-0-0-3

Course Objective: To teach the students concepts and interpretation of Geometric Dimensioning and Tolerancing of a component that goes into assembly from the point of view of Design, manufacture and Assembly.

Upon completion of the course, students shall be able to:

#	Course Outcomes	Mapping to POs
1.	Comprehend the mutual dependence of design and manufacture in the production of cost-effective quality products	3
2.	recognize various symbols used to specify tolerances on component drawings and understand the functional significance of a particular feature on a component	4
3.	Interpret and/or specify tolerance for a specific fit between mating components in an assembly	4
4.	Identify the most suitable inspection method/technique for cost effective quality control	11

Course contents:

Module – 1	
Introduction to Geometrical Tolerancing: Need for GD&T, Size general principles, Definitions of size, Groups of sizes and dimensions. Classification and symbols of Geometric Tolerancing. Tolerances of form - General concepts, Straightness, Roundness, Flatness, Cylindricity, Line and surface profile, Rules for form Tolerancing.	10 Hrs.
Module – 2 Datums: Datums, datum features and simulated datum features, establishing datums,	
Datum s. Datums, datum reatures and simulated datum reatures, establishing datums, Datum targets, Datum systems - Three-Plane datum-system, Groups of features nominated as datums.	10 Hrs.
Tolerances of Orientation: Parallelism Perpendicularity and Angularity tolerances with typical examples	
Module – 3	
Tolerance of location: Position, Concentricity & Coaxiality and Symmetry tolerances of line or surface with or without datum - Profile any line, Profile any surface. Tolerances of runout: Circular run-out, Circular run-out in the radial direction, Circular run-out in the axial and in any direction, total runout. Material Conditions: Maximum and least material condition, Shift Tolerance, Principle of independency, Maximum material condition, Maximum material virtual limit, least material requirement, Reciprocity requirement.	10 Hrs.
Module – 4	
Taylor's Principle of design of gauges, Taylor's Envelop Principle, Go and No-Go gauges for size, Terms and Definitions for Individual Features of Size, Actual Size Definitions, Relationship of individual Features, Perfect Orientation between Features. Projected tolerance zone, Free state Tolerancing. Introduction to stack up analysis.	10 Hrs.

SELF STUDY COMPONENT

To undergo survey on various applications of GD&T symbols in production drawings of real-world applications and prepare a report on it.

Group activity on preparation of GD&T models for different types of tolerances and prepare a report on it.

TEXT BOOK

Geometrical Product Specifications – Course for Technical Universities by Z. Humienny et al, Warsaw University Press 2001

REFERENCE BOOKS

1. Geometric Dimensioning and Tolerancing, for Mechanical design by Gene R. Cogorno, McGraw Hill, 2006

Geometric Dimensioning and Tolerancing – James D. Meadows, Marcel Dekker Inc., Special Indian Edition, 1995

Course Outco mes		Program Outcomes [POs]												
COs	POI	P02	PO3	PO4	PO5	PO6	PO7	PO8	909	PO10	P011	P012	PSO1	PSO2
CO1	-	-	3	-	-	-	-	-	-	-	-	-	-	-
CO2	-	-	-	3	-	-	-	-	_	-	-	-	-	-
CO3	-	-	-	3										
CO4	-	-	-	-	-	-	-	-	-	-	3	-	-	-

AUTOMOTIVE ENGINEERING

22ME634

ExamHours:03

SEE:50Marks

LTPC:3-0-0-3 Hours/Week:03 Total hours :40

Course objectives: To impart knowledge on components of automotive systems and their functions

Course Outcomes (COs) {with mapping shown against the Program

Outcomes (POs)}Upon completion of the course, students shall be able to:

#	Course Outcomes	POs
1.	Describe the functional components and mechanisms of IC engines.	1
2.	Summarize the cooling, lubrication, ignition, and fuel supply systems of IC engines.	1, 7
	Explain the importance and functions of the transmission, suspension, and braking systems of automobiles.	1
4.	Choose the fuel, mixture requirements, and methods of emission control for IC engines.	1, 7

Course Contents:

Module– 1	10 Hrs.					
Introduction: Components of an automobile, engine systems, types of engines, cylinder– arrangements, Engine Components-liners, piston, piston rings, connecting rod, camshaft, crankshaft, valves, valve actuating mechanisms and choice of materials for different engine components.						
Cooling & Lubrication Systems: Cooling requirements, methods of cooling– air and water cooling, Objects and methods of lubrication systems.						
Module– 2						
Ignition Systems: Requirements of an ignition system, Types - Battery and magneto systems, transistor assist contacts electronic ignition, automatic ignition advance systems	-					
Fuels & Fuel Supply Systems for SI & CI Engines: Normal and abnormal combustion. strength requirements of SI engines, simple carburetor, single point and multi point injection systems, diesel injection system–common rail and individual pump injection methods.	nt petrol					
Superchargers and Turbochargers: Supercharger–types, construction detail and principle, Turbo charger& turbocharger lag.	working					
Module– 3	10 Hrs.					
Clutches: Requirements and principle of operation. Types-single plate, multi-plate and centrifugal clutches. Transmission system: Necessary of transmission, types – constant mesh boxes, automatic transmissions, epicyclic gear trains.						
Drive To Wheels: Propeller shaft and universal joints, final drive, differential, rear axle, rear axle, rear axle drives-hotch kiss and torque tube drives.						

Steering system: Introduction, steering linkage for rigid axle and, steering gears &power steering.

Module- 4	10 Hrs.
Suspension system: Requirements, Torsion bar suspension systems, leaf sprin shock absorbers and air suspension system.	g, coil spring,
Brakes: Requirements, method of actuation, drum brakes, disk brakes, an systems (ABS).	tilock braking
Emission Control Systems: Introduction, methods of emission controls crankcase ventilation, controlling evaporative emissions, redesigning the engine exhaust gas for SI and CI engines, emission standards.	0
SELFLEARNINGCOMPONENTS:	
1. Automotive electrical System: Charging system, starting system, storage batt system, safety sensors etc.	eries, lighting
2. Accessories: Air-conditioning, power windows, central locking, vehicle tra cruise control, keyless entry etc.	cking system,
3. Classification and specifications of Motorcycles, four, Six, and more than Six-w	heel vehicles
REFERENCEBOOKS:	
1. Dr. Kirpal Singh, Automobile Engineering, Vol.1 Standard publisher's distribu	tors,13 th
 Edition2013.ISBN:978-81-8014-196-6. 2. Dr. Kirpal Singh, Automobile Engineering, Vol.2 Standardpublisher'sdistribute Edition 2014.ISBN:978-81-8014-206-2. 	ors,13 th
3. R. B. Gupta, Automobile Engineering, Satya Prakashan, 1984.ISBN:9788176843799.	4 th Edition.
4. V. Ganesan, Internal combustion engines, McGraw-Hill	education,
 4thEdition2013.ISBN:978-1-25-900619-7. 5. N.K. Giri, Automobile Mechanics, Khanna Publisher, 8th Edition20 8174092168. 	08.ISBN : 978-

Course Out comes		Program Outcomes [POs]												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	909	PO10	PO11	PO12	PSO1	PSO2
CO1	3													
CO2	3						1							
CO3	3													
CO4	3						1							

PRINCIPLES OF MANUFACTURING

22OEME61		
Exam Hours: 3		
SEE: 50Marks		

LTPC:3-0-0-3 Hours/Week:03 Totalhours:40

Course objectives: To equip students of other engineering disciplines with the fundamental aspects of manufacturing processes and their applications

Course Outcomes (COs) {with mapping shown against the Program Outcomes (POs)}

Upon successful completion of this course, the student shall be able to:

#	Course Outcomes	Mapping to POs	Mapping to PSOs
1	realize the role of manufacturing processes in other engineering branches and learn principles of different metal forming processes	1	-
2	comprehend the basic principles and recent developments of modern manufacturing processes	1, 5	-
3	realize the significance of various joining and assembly techniques	1	-
4	infer the basic concepts of special processing and assembly technologies	1, 5	-

Course Contents:

nanofabrication technologies.

Module – 1	10 Hrs.
Introduction and overview of manufacturing: History and concepts of manufacturing,	Materials
in manufacturing, Classification of manufacturing processes.	
Fundamentals of metal forming: Overview of metal forming, working principle, a	dvantages,
limitations and applications of rolling, forging, extrusion, wire and bar drawing, sh	neet metal
operations - shearing, blanking and punching, bending operations - V and Edge bending	, drawing,
bending of tube stock.	
Module – 2	10 Hrs.
Fundamentals of material removal: Classification of material removal processes, Trad	itional vs.
Non-traditional machining process, working principle, advantages, limitations and appli	cations of
ultrasonic machining, abrasive jet machining, electrochemical machining - deburring, gri	nding and
honing, chemical machining, laser beam machining, electron beam machining.	
Module – 3	10.11
Module – 5	10 Hrs.
Fundamentals of joining and assembly processes: Working principle, advantages, limit	
	ations and
Fundamentals of joining and assembly processes: Working principle, advantages, limit applications of electron beam welding, laser beam welding and ultrasonic welding.	ations and
Fundamentals of joining and assembly processes: Working principle, advantages, limit applications of electron beam welding, laser beam welding and ultrasonic welding. Adhesive bonding: Materials and their properties, advantages, limitations and application	ations and
Fundamentals of joining and assembly processes: Working principle, advantages, limit applications of electron beam welding, laser beam welding and ultrasonic welding. Adhesive bonding: Materials and their properties, advantages, limitations and application Coatings: Painting, paint application methods, chemical conversion coatings, electro less plating, mechanical plating, porcelain enameling, clad materials.	ations and as. troplating,
Fundamentals of joining and assembly processes: Working principle, advantages, limit applications of electron beam welding, laser beam welding and ultrasonic welding. Adhesive bonding: Materials and their properties, advantages, limitations and application Coatings: Painting, paint application methods, chemical conversion coatings, electro anodizing, electro less plating, mechanical plating, porcelain enameling, clad materials. Module – 4	ations and as. troplating, 09 Hrs.
Fundamentals of joining and assembly processes: Working principle, advantages, limit applications of electron beam welding, laser beam welding and ultrasonic welding. Adhesive bonding: Materials and their properties, advantages, limitations and application Coatings: Painting, paint application methods, chemical conversion coatings, elec anodizing, electro less plating, mechanical plating, porcelain enameling, clad materials. Module – 4 Rapid Prototyping: Fundamentals of rapid prototyping, classification of rapid p	ations and as. troplating, 09 Hrs.
Fundamentals of joining and assembly processes: Working principle, advantages, limit applications of electron beam welding, laser beam welding and ultrasonic welding. Adhesive bonding: Materials and their properties, advantages, limitations and application Coatings: Painting, paint application methods, chemical conversion coatings, elec anodizing, electro less plating, mechanical plating, porcelain enameling, clad materials. Module – 4 Rapid Prototyping: Fundamentals of rapid prototyping, classification of rapid p technologies, applications of rapid prototyping.	ations and is. troplating, 09 Hrs. rototyping
Fundamentals of joining and assembly processes: Working principle, advantages, limit applications of electron beam welding, laser beam welding and ultrasonic welding. Adhesive bonding: Materials and their properties, advantages, limitations and application Coatings: Painting, paint application methods, chemical conversion coatings, elec anodizing, electro less plating, mechanical plating, porcelain enameling, clad materials. Module – 4 Rapid Prototyping: Fundamentals of rapid prototyping, classification of rapid p	ations and is. troplating, 09 Hrs. rototyping Processes

SELF-STUDY:

- 1. Simulation of manufacturing processes through online virtual labs.
 - https://3dp-dei.vlabs.ac.in/List%20of%20experiments.html
 - <u>http://msvs-dei.vlabs.ac.in/upsetting_simulation.php</u>
 - http://mm-coep.vlabs.ac.in/
 - http://vlabs.iitkgp.ac.in/psac/newlabs2020/vlabiitkgpAM/#
 - http://vlabs.iitkgp.ac.in/psac/newlabs2020/vlabiitkgpMM/
- 2. Preparation of reports on the simulation and presentations to be made in a group.

TEXT BOOK:

1. Mikell, P. Groover. Fundamentals of modern manufacturing: materials, processes and systems. JOHN WILEY, 2019.

REFERENCE BOOKS:

- 1. Black, J. Temple, and Ronald A. Kohser. DeGarmo's materials and processes in manufacturing. John Wiley & Sons, 2017.
- 2. Pham, Duc, and Stefan S. Dimov. Rapid manufacturing: the technologies and applications of rapid prototyping and rapid tooling. Springer Science & Business Media, 2012.
- 3. Production Technology, HMT TATA McGraw Hill 2001 ISBN-0070764432.
- 4. Adityan, Modern Machining Process, 2002. ISBN-85143774 -11.

Course Outco mes		Program Outcomes [POs]												
COs	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	909	PO10	P011	P012	PSO1	PSO2
CO1	3													
CO2	3				1									
CO3	3													
CO4	3				1									

PROJECTMANAGEMENT

22OEME62					
Exam Hours: 3					
SEE: 50Marks					

LTPC:3-0-0-3 Hours/Week:03 Totalhours:40

Course objectives: To impart a comprehensive understanding of how to plan, optimize and efficiently manage projects (or tasks) to implement products, services or developments.

Course Outcomes (COs) {with mapping shown against the Program Outcomes

(POs) Upon successful completion of this course, the student shall be able to

CO's	Statement 's	PO's
1	describe project management, the project lifecycle, planning, estimating, and the project manager's roles.	1, 9, 11
2	demonstrate project organization structures, tendering and contracting processes, scheduling, and CPM and PERT.	1, 2, 9, 11
3	comprehend, how organizations enhance project management through directing, coordinating, and controlling.	1, 9, 10, 11
4	explain the importance of software efforts and techniques in project management and conduct project case studies.	1, 9, 10, 11

Course Contents:

 Introduction to Project Management: Concept of project and project management, characteristic features and classification of projects, phases of Project management, selection of project managers and their duties.

Project Planning and Estimation: Project planning steps, objectives and goals of the project, Feasibility reports, financing arrangements, preparation of cost estimation, evaluation methods for project profitability.

Module-II

Module-I

10 Hrs.

10 Hrs.

Organizing and Staffing the Project Team: Authorities of project manager, organizational organizational structure and types, accountability in project execution, contracts, 3'R'sofcontracting, tendering process and selection of contractors, team building.

Project Scheduling Tools and Techniques: Gantt chart, bar chart for combined activities, Critical path method (CPM) and Project evaluation and review technique (PERT), Numerical problems

Module-III

Project Direction, Coordination and Control: Project direction, communication in a project, PMIS, project coordination control, schedule control& cost control.

Risk management: Introduction, Risk Management Process, Monitoring and Control Risks.

Performance Measures in Project Management: Performance indicators, performance improvement, The CM & DM companies for better project management, project management environment.

Module–IV.

10Hrs

Software project management: Introduction, computerized project management, managing software projects, overview of capability maturity model (CMM), project management and the CMM. **Case studies on project management:**

Case studies on Project planning, scheduling, tools and techniques, performance measurement.

Self-Study Component:

- History and Evolution of Project Management
- Group of students to take upon mini project and apply various phases of project management. Prepare a report on it.
- Make survey of various Software project management tools and use any one tool.

Textbook:

- 3. ProjectManagementaSystemapproachtoplanningScheduling&Controlling-HaroldKerzner, 10thedition 2009, John Wiley &sons.
- 4. Chaudhry S, ProjectExecutionPlan-PlanforprojectExecutioninteraction, 2001

Reference Books:

- 5. Software Project Management in Practice-Pankaj Jalote, Pearson education
- 6. Fundamentals of Project Management: RoryBurke,2010, Burke Publishing.
- 7. Project planning scheduling & control, James P. Lawis, Meo Publishing Company, 5thedition 2010.
- 8. A Management Guide to PERT and CPM, WEIST & LEVY-Eastern Economy of PHI2002.

Course Outcomes		Program Outcomes [POs]												
COs	PO1	P01 P02 P03 P04 P05 P06 P06 P06 P07 P07 P07 P09 P010 P011 P011								PSO1	PSO2			
CO1	2								3		3			
CO2	2	2							3		3			
CO3	2								3	2	3			
CO4	2								3	2	3			

ACCOUNTING FOR ENGINEERS

LTPC: 3-0-0-3

Total hours: 40

Hours / Week: 03

22OEME63

Exam Hours: 3

SEE: 50 Marks

Course objective:

- 1. Understand the accounting concepts; prepare financial statement as per the standards.
- 2. Make decisions using accounting tools.
- 3. Analyze the financial status and identify the avenues in which companies will lead to profitable and undisclosed information.
- 4. Utilize budgetary techniques for future planning, identify the alternatives and formulate the best decisions.

Course Outcomes (COs) { with mapping shown against the Program Outcomes (POs) }

Upon completion of the course, students shall be able to:

COs	Statement	Pos					
1.	comprehend the Indian accounting standard and international accounting	2, 11,12					
	standard.						
2.	apply basic accounting and finance ideas, which you can then utilize when						
	working in a managerial role in an organization.	2, 11,12					
3.	analyze a company's financial position to uncover hidden profit opportunities.	2, 11,12					
4.	use budgetary approaches for both long-term and short-term decision making						
	in the organization.						

COURSE CONTENT:

Module -I	10 Hrs.						
Introduction to Financial Accounting: Definition, Importance, Principles - Concepts &							
Conventions, Double entry bookkeeping system, Bases of accounting - Cash basis and Accrual							
basis, Journal, Ledger, and Trial Balance (Simple numerical problems)							
Module -II 10 Hrs.							
Preparation and Interpretation of Financial Statements: Objective, Impor	Preparation and Interpretation of Financial Statements: Objective, Importance and						
Limitations, Trading Account, Profit and Loss Account, Balance Sheet- Grouping of assets and							
liabilities, Preparation of final accounts without adjustments. Interpretation of financial							
statements (Simple numerical problems).							
Module -III	10 Hrs.						
Financial Ratio Analysis: Introduction, Objectives, Classification, Advantages, Limit	tations and						
Computation of Liquidity ratios, Profitability ratios, Leverage ratios, Activity ratio	os (Simple						
numerical problems).							
Module -IV	10 Hrs.						
Budgetary Control: Budgetary Control: Meaning of a Budget, Budgetary control, Objectives of							
budgetary control, Essential features of Budgetary Control& merits, Steps in budgetary Control,							
Types of Budgets, Flexible Budget, Limitation of Budget Control (Simple numerical problems).							

TEXTBOOKS:

- 1. Kakani Ramachandran, (2011), Financial Accounting for Management, 3rd edition,McGrawHill, India
- 2. Godwin, Alderman, Sanyal (2016), Financial ACCT Financial Accounting (2016), Cengage Learning.

REFERENCE BOOKS

- Anthony A.Atkinson, Robert S.Kaplan, S.Mark Young, Ella Mae Matsumura, G.Arunkumar (2014), Management Accounting: Information for Decision Making and Strategy Execution, 6thedition, Pearson Education, India.
- 2. R.L.Gupta, V.K.Gupta: Fundamentals of Accounting: Sultan Chand & Sons: Year of Publication 1993
- 3. Khatri, (2011), Financial Accounting, 1stedition, McGraw Hill, India.
- 4. Khan M.Y, Jain P.K, (2009), Management Accounting, 5thedition, McGraw Hill, India

Course Out comes	Program Outcomes [POs]													
COs	POI	P02	PO3	P04	PO5	PO6	PO7	PO8	P09	PO10	PO11	P012	PSO1	PSO2
CO1		3									3	2		
CO2		3									3	2		
CO3		3									3	2		
CO4		3									3	2		

OPERATIONS RESEARCH

220EME64 Exam Hours: 3 SEE: 50Marks

LTPC:3-0-0-3 Hours/Week:03 Totalhours:40

Course objectives: To apply the fundamental techniques of Operations Research to formulate and solve problems involving Linear Programming and heuristic approaches.

Course Outcomes (COs) { with mapping shown against the Program Outcomes (POs) }

Upon completion of the course, students shall be able to:

	Course Outcomes	Mapping to POs	Mapping to PSOs
1.	formulate real-world problems as a linear programming problem and obtain the optimal solutions using graphical and analytical methods.	1,2,3	-
2.	formulate and solve transportation and assignment problems using appropriate method.	2, 4,6	-
3.	design and solve simple models of CPM, PERT, and queuing to improve decision making and develop critical thinking and objective analysis of decision problems.	2,5,6,11	-
4.	select the best course of action out of several alternative courses for the purpose of achieving objectives by applying game theory and sequencing models.	2,5,6,11	-

Course Contents:

Module – 1	10 Hrs.						
Introduction: Linear programming, Definition, scope of Operations Research (O.R) approach and							
limitations of OR Models, Characteristics, and phases of OR, Mathematical formulation of L.P.							
Problems, Graphical solution methods.							
Linear Programming Problems: The simplex method - slack, surplus and artificial	variables.						
Concept of duality, two phase method, dual simplex method.							
Module – 2	10 Hrs.						
Transportation Problem: Formulation of transportation model, Basic feasible solut	ion using						
different methods, Optimality Methods, Unbalanced transportation problem, Deger	neracy in						
transportation problems, Applications of Transportation problems							
Assignment Problem: Formulation of Assignment Problem, unbalanced assignment	problem,						
Applications of Assignment Problem, Traveling salesman problem and its applications.							
Module – 3	10 Hrs.						

PERT-CPM Techniques: Network construction, determining critical path, floats, scheduling by network, project duration, variance under probabilistic models, prediction of date of completion. **Queuing Theory:** Queuing system and their characteristics. The M/M/1 Queuing system, Steady state performance analysing of M/M/ 1 and M/M/C queuing models.

Module-4

09 Hrs.

Game Theory: Formulation of games, Two Person-Zero sum game, games with and without saddle point, Graphical solution (2x n, m x 2 game), dominance property.

Sequencing: Johnson's algorithm, n - jobs to 2 machines, n jobs 3machines, n jobs m machines without passing sequence, 2 jobs n machines with passing, Graphical solutions priority rules.

TEXTBOOKS:

- 1. Taha H. A, Operations Research and Introduction, Pearson Education edition, 8th edition, 2007, ISBN: 9780131889231.
- 2. Operations Research, S. D. Sharma –KedarnathRamnath& Co, 2002, ISBN: 1234567142552

REFERENCE BOOKS:

- 1. AM Natarajan, P. Balasubramani and A Tamilaravari, Operation Research, Pearson 2005
- 2. 9788131700006.
- 3. Hiller and Liberman, Introduction to operation research, McGraw Hill. 5th edition 2001, ISBN: 978-0077298340.
- 4. Ravindran, Phillips and Solberg, Operations Research: Principles and practice: Wiley India ltd, 2nd Edition 2007 ISBN: 9788126512560
- 5. Prem Kumar Gupta, D S Hira, S Chand Publications, Operations Research, New Delhi, 2007, ISBN: 9788121941006

Course Out comes		Program Outcomes [POs]												
COs	PO1	PO2	PO3	P04	PO5	PO6	PO7	PO8	P09	PO10	P011	P012	PSO1	PSO2
CO1	2	3	2											
CO2		3		2		2								
CO3		3			2	2					2			
CO4		3			2	2					2			

INDUSTRIALENGINEERINGANDERGONOMICS

220EME65

LTPC:3-0-0-3

Exam Hours: 3 SEE: 50Marks Hours/Week:03 Totalhours:40

Course objectives: To provide basic knowledge of productivity and method study, work measurement and ergonomics in various sectors and its effectiveness in improvement of productivity.

Course Outcomes (COs) { with mapping shown against the Program Outcomes (POs) }

#	Course Outcomes	Mapping to POs	Mapping to PSOs
1.	explain the fundamental concepts of productivity and work study	1, 6,11	-
2.	compare and prepare the charts for the existing method and new / proposed method to identify the unnecessary movements.	2, 6,11	-
3.	apply the concepts of work measurement to solve problems related to work measurement and performance of workers	2, 6	-
4.	apply the ergonomic concepts in design of new systems, displays and controls	3, 6	-

Upon successful completion of this course, the student shall be able to:

COURSE CONTENTS:

Module – 1	10 Hrs.					
Productivity and work study: Definition of productivity, Production and productivity expectations from productivity, benefits from productivity, productivity measures, advantages and limitations of productivity measures, Factors affecting the productivity, Productivity improvement programmes (Simple Problems). Basic work content. Definition, objective and scope of work-study. Human factors in work study. Work study and management, work study and supervision, work study and worker.						
Module – 2	10 Hrs.					
Method Study and Tools for Method study: Definition, objective and scope of met activity recording and exam aids. Charts to record moments in shop operation – proc flow process charts, travel chart and multiple activity charts (Problems). Charts to record at workplace – principles of motion economy, classification of moments, two hands chart, SIMO chart, (Problems)	ess charts, rd moment					
Module – 3	10 Hrs.					
Work Measurement: Definition, objectives, preparing to measure process work, techniques of work measurement, types of elements, time study equipments, performance rating, allowances, computation of standard time, comparison of various techniques, work sampling, synthetic data, predetermined motion time analysis (PMTS)						

	Module – 4	10 Hrs.								
	gonomics and Design of Man-Machine System: Introduction, areas of st	•								
	ergonomics, System approach to ergonomics model, Man-machine system. Components of man- machine system and their functions Quantitative, qualitative representation and alphanumeric									
	displays. Controls and their design criteria, Control types, Relation between controls and displays.									
	sign of workplace.	la alspiajo.								
	LF STUDY:									
	1. Study of occupational loads									
	2. Study in detail about working space and working environment.									
	3. Working environment factors									
	4. Anthropometry and its importance									
	5. Risk factors for musculoskeletal disorders in the workplace									
	6. Predetermined motion time system techniques and development of PMT system									
	CXT BOOKS:									
	Industrial Engineering and Production Management, Martand T Telsang, 3 rd edi	tion, 2018.								
	3N 978-93-525-3379-4									
2.	Work Study & Ergonomics, Suresh Dalela& Saurabh, standard publishers & d ISBN 9780850660085	listributors.								
DI	EFERENCE BOOKS:									
ĸr	LFERENCE DOURS.									
1.	Introduction to Ergonomics, R. C. Bridger, McGraw Hill Publications.									
ISI	3N 978-0-8493-7309-0									
2.	Industrial Design for Engineers, Mayall W. H. London Hiffee Books Ltd., 1988.									
ISI	3N -10-0592042057									
3.	Human Factor Engineering: Sanders & McCormick McGraw Hill Publications.									
	ISBN 08403 16240									

Course Outcomes		Program Outcomes [POs]												
COs	P01	PO2	PO3	P04	PO5	PO6	PO7	PO8	909	PO10	P011	P012	PSO1	PSO2
CO1	3					2					2			
CO2		2				2					2			
CO3		2				2								
CO4			2			2								

OCCUPATIONAL HEALTH AND SAFETY ENGINEERING

20OEME66 Exam Hours: 3 SEE: 50 Marks

LTPC: 3-0-0-3 Hours / Week: 03 Total hours: 40

Course objectives:

To apply the basic concept of occupational health and safety standards in workplace scenario.

Course Outcomes (COs) { with mapping shown against the Program Outcomes (POs) }

Upon completion of the course, students shall be able to:

COs	Statement	POs				
1.	interpret and apply legislative requirements, industry standards, and best practices in a variety of workplaces.	6, 11				
2.	apply risk management principles to anticipate, identify, evaluate and control physical, chemical, biological, and psychosocial hazards.					
3.	identify fire and electrical safety hazards, Product Safety and risk in the workplace.	6, 7, 11				

COURSE CONTENTS:

Module – I						
Introduction: Occupational Safety and Health Act, Occupational Safety and Health Administration, right to know Laws. Indian Acts – Labour Act, Factories Act, OSHA.	10 Hrs.					
Module – II						
Occupational Hazard and Control: Hazard Analysis, Human Error and Fault Tree						
Analysis, Emergency Response. Hazards and their control in different manufacturing	10 Hrs.					
and processing industries.						
Module – III						
Fire Prevention and Protection: Types of Fire, Fire Development and its Severity,						
Effect, Extinguishing Fire, Electrical Safety, Product Safety and Environmental	10 Hrs.					
Management Plan.						
Module – IV						
Occupational Health: Personal Protective Equipments. Health and Safety						
Considerations in Construction Industries, Textile Industries, Food Processing	10 Hrs.					
Industries, Pharmaceutical Industries and Chemical& petroleum Industries.	10 1115.					
Occupational Health and Safety considerations in Wastewater Treatment Plants.						

SELF STUDY:

Workplace ergonomics, fire safety, workplace violence prevention, employee health resources, and environmental safety.

TEXTBOOK:

Goetsch D.L., "Occupational Safety and Health for Technologists", Engineers and Managers", Prentice Hall.

REFERENCE:

1. Heinrich H.W., "Industrial Accident Prevention", McGraw Hill Publication, Network.

2. Colling D.A., "Industrial Safety Management and Technology", Prentice Hall, New Jersey.

3. Della D.E., and Giustina, "Safety and Environmental Management", Van Nostrand Reinhold International Thomson Publishing Inc.

4. CPHEEO, Manual on Sewerage and Sewage Treatment, M/s.Jain Book Agency, c-9, Connaught place, New Delhi.

5. National Safety Council and Associate (Data) Publishers Pvt. Ltd., "Industrial Safety and Pollution Control Handbook"

Course Outcomes		Program Outcomes [POs]												
COs	PO1	P02	PO3	P04	PO5	PO6	PO7	PO8	P09	PO10	P011	P012	PSO1	PSO2
CO1						3					2			
CO2						3	2				1			
CO3						3	2				1			

DESIGN LABORATORY

20ME606 Exam Hours: 3 SEE: 50 Marks

LTPC: 0-0-2-1 Hours / Week: 02 Total hours: 26

Course objectives: To provide students with the necessary skills to conduct experiments, collect data, perform analysis and interpret results to draw valid conclusions through standard test procedures to evaluate kinematic and dynamic characteristics of machine elements.

Course Outcomes (COs) { with mapping shown against the Program Outcomes (POs) }

#	Course Outcomes	Mapping to POs	Mapping to PSOs
1	determine the behavior of undamped & damped system for longitudinal, torsional and forced vibrations in a single degree freedom system.	1,2,9,10	-
2	conduct experiments on governors, gyroscope, balancing of rotating masses and pressure distribution around journal bearing.	1,2,9,10	-
3	determine the stresses & strains in a member subjected to combined Loading using rosettes and photo elasticity.	1,2,9,10	-

Upon completion of the course, students shall be able to:

Course Contents:

- 1. Determination of equilibrium speed, sensitiveness, power and effort of centrifugal governors.
- 2. Conduct experiments on gyroscope.
- 3. Experiment on Balancing of rotating masses.
- 4. Determination of pressure distribution in journal bearing
- 5. Determination of natural frequency, logarithmic decrement, damping ratio and damping coefficient in a single degree freedom system.
- 6. Experiments on longitudinal, Torsional and forced vibrations.
- 7. Determination of critical speed of a rotating shaft.
- 8. Determination of principal stresses and strains in a member subjected to combined loading using rosettes.
- 9. Demonstration of stress concentration using photo elasticity for simple components like plate with a hole under tension or bending, circular disk with circular hole under compression, 2 D crane hook.
- 10. Determination of fringe constant of photo elastic material using
 - a) Circular disc subjected to diametral compression.
 - b) Pure bending specimen (four-point bending).

COURSE ATRICULATION MATRIX

Course Outcom es	Program Outcomes [POs]													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	909	PO10	PO11	P012	PSO1	PSO2
CO1	3	3							2	2				
CO2	3	3							2	2				
CO3	3	3							2	2				
CO4	3	3							2	2				

PROJECT WORK PHASE-1

22ME605 Exam Hours: 3 SEE: 50 Marks LTPC: 0-0-4-2 Hours / Week: 04 Total hours: 26

Course Objectives: To take part in a group to demonstrate the acquired skill & knowledge gained to identify, formulate, analyze, evaluate and to provide meaningful engineering solutions to Industrial/societal needs.

Course Outcomes (COs) {with mapping shown against the Program

Outcomes (POs) } Upon successful completion of this course, the student

shall be able to:

#	Course Outcomes	Mapping to POs	Mapping to PSOs
1.	identify a problem from the available literature and societal needs	1,2,3,4,5,6,7,8, 9,10,11,12	-

SCHEME OF EVALUATION

	PHASE -I	MAX MARKS:
Sl. No.	Particulars	Distribution of Marks
1.	Literature Survey/Problem Declaration (Team)	20
2.	Presentation skill (Individual)	20
3.	Viva voce (Individual)	10

SEE is conducted for 50 marks by internal and external examiners appointed by the Dean (Exams) on recommendations of the HOD

Examination	Maximum marks	Minimum marks to qualify
CIE	50	20
SEE	50	20

COURSE ATRICULATION MATRIX

Course Outcom es	Program Outcomes [POs]													
COs	PO1	PO2	PO3	P04	PO5	PO6	PO7	PO8	909	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	2	2	2	2	3	3	2	2		

RUBRICS FOR PROJECT WORK (PHASE -I)

PHASE – I (100 Marks)

Criteria/ Grading	Literature Survey/ Problem Identification (40)	Presentation skill (40)	Viva voce (20)
Excellent (37-40)	Outstanding investigation in all aspects. The project's purpose and need are explained in great detail.	A well-planned and executed presentation and demo that clearly demonstrated the product's value. Presentations are well-prepared and delivered. Maintaining eye contact with the audience and speaking clearly.	Outstanding Contribution demonstrating the individual's dependence on the project.
Good (32-36)	A well-researched project with depth and thoroughness, good research planning, and ample referencing. Collects a lot of data and studies the existing systems.	Very good demonstration. Detailed description of the project and its issues. Presentations are well- prepared and delivered. Good spoken language but less eye contact with audience.	Strong contribution, as evidencedby the overall quality of the work.
Average (16-30)	The study is organized. Coverage is suitable and referenced. Moderate analysis of existing systems; gathers basic data.	Timed presentation, demo with student explaining what they learned. Presentations have good content but poor delivery. Few eye contacts and a muddled voice.	Some contribution as reflected inoverall work.
Poor (0- 15)	Minimal research, minimal referencing, moderate explanation of the project's purpose and need.	The student can't articulate the project development. Presentations are inappropriate and poorly delivered. Poor eye contact and voice clarity.	No Contribution.

Course Title	Analytical Ability and Soft Skills								
Course Code	22ASK	L-T-P	0-1-0-1						
Exam	03	Hours/Week	40						
SEE	50Marks	Total Hours	80						

This course

willbeconducted at the endoff if the mester for two weeks by TAP department. Course Objective : To Enhanceproblem solving skills and communication skills

Courseoutcomes:At the endofcourse,studentwillbeableto:

MODULE-1

Hard Skills: Speed/Distance, Probability, Permutations/Combinations,

Profit/Loss, SimpleInterest/CompoundInterest, Numbertheories, Number/Letterseries, Coding/Decomposition and the second second

ding,Bloodrelations,

Directions, Clock, Calendar. Logical reasoning problems

MODULE-2

SoftSkills:Basicgrammar,Spottingerrors,Sentenceformation,Emailwriting,Publicspeaking,Client

communication, Leadership, Managerialskills, Stressmanagement, PresentationSkills

MODULE-3

 $\label{eq:constraint} Technical Skills: Review of C programming, Simple coding, Syntaxrules, MCQ son Clanguage.$

MODULE-4

Activities:GD,JAM,MockInterview,Pickandspeak,Presentation

SUSTAINABLE ENGINEERING

22ME608

LTPC:0-0-2-0 Hours/ Week:02 Total hours: 26

Exam Hours:1 SEE:50Marks

Course Outcomes (COs) { with mapping shown against the Program Outcomes (POs) }

Upon successful completion of this course, the student shall be able to:

#	Course Outcomes	Mapping to POs	Mapping to PSOs
1.	enumerate the relevance and the concept of sustainability and the global initiatives in this direction	6, 7,12	-
2.	explain the different types of environmental pollution problems and their sustainable solutions.	6, 7, 12	-
3.	Outline the concepts related to conventional and non-conventional energy	6,7,12	-
4.	Demonstrate the broad perspective of sustainable practices by utilizing engineering knowledge and principles.	6,7, 12	-

COURSE CONTENTS:

Module-1	06 Hrs.
Sustainability- need and concept, technology and sustainable development-Natural response pollution, Carbon credits, zero waste concept.	ources and their
Module -2	06 Hrs.
Environmental Pollution : Air Pollution and its effects, Water pollution and its sources, ze and 3 R concepts in solid waste management; Greenhouse effect, Global warming, Climate ch	-
Module -3	07 Hrs.
Resources and its utilization: Basic concepts of Conventional and non-conventional energy about solar energy, Fuel cells, Wind energy, Small hydro plants, biofuels, Energy derived Geothermal energy.	•••
Module-4	07 Hrs.
Sustainability practices: Basic concept of sustainable habitat, Methods for increasing ene buildings, Green Engineering, Sustainable Urbanization, Sustainable cities, Sustainable transp	•••
 <u>Textbooks:</u> Allen, D. T. and Shonnard, D. R., Sustainability Engineering: Concepts, Design a Prentice Hall. Bradley. A.S; Adebayo,A.O., Maria, P. Engineering applications in sustaina development, Cengage learning. Environment Impact Assessment Guidelines, Notification of Government of India, 	able design and

Reference Books:

- 1. Mackenthun, K.M., Basic Concepts in Environmental Management, Lewis Publication, London, 1998
- 2. ECBC Code 2007, Bureau of Energy Efficiency, New Delhi Bureau of Energy Efficiency Publications-Rating System, TERI Publications - GRIHA Rating System
- 3. Ni bin Chang, Systems Analysis for Sustainable Engineering: Theory and Applications, McGraw-Hill Professional.
- 4. Twidell, J. W. and Weir, A. D., Renewable Energy Resources, English Language Book Society (ELBS).
- Purohit, S. S., Green Technology An approach for sustainable environment, AgrobiosPublicationErach Bharucha, "Text Book of Environmental Studies", for UGC, University press, 2005

COURSE ATRICULATION MATRIX

Course Out comes	Program Outcomes [POs]													
COs	PO1	P02	PO3	PO4	PO5	PO6	PO7	PO8	909	PO10	P011	P012	PSO1	PSO2
CO1						3	2					1		
CO2						3	2					1		
CO3						3	2					1		
CO4						3	2							